PERFORMANCE ASSESSMENT OF CONTAMINATION BARRIER CURTAIN BASED ON CROSS-BOREHOLE ELECTRICAL RESISTIVITY TOMOGRAPHY (CT)
-
摘要: 为克服传统钻孔取样和常规阵列测量的跨孔电阻率法在帷幕检测工作中的不足,采用阵列优化方法对3种常规跨孔电阻率阵列进行优选,构建了高分辨率和高信噪比的阻隔帷幕测量组合阵列。采用数值模拟方法对该组合阵列进行阻隔帷幕检测效果验证,并应用于某垃圾填埋场的阻隔帷幕性能检测。根据垃圾填埋场2处阻隔帷幕的跨孔电阻率CT探测结果得出:膨润土阻隔帷幕主体在固结初期表现为均匀完整的低阻带,电阻率为0.001~0.06 Ω·m,2处阻隔帷幕的注浆影响半径分别为0.55,0.95 m,满足帷幕厚度和完整性要求。结合阻隔帷幕芯样的渗透系数测试分析得出:2个测量区域阻隔材料渗透系数均<10-6 cm/s,满足污染阻隔的性能要求。利用组合阵列的跨孔电阻率CT技术,实现对污染场地阻隔帷幕完整性和防渗性能的高效准确评价。Abstract: In this study, an optimized combination array with high resolution and signal-to-noise ratio was constructed from three conventional arrays of cross-borehole electrical resistivity to compensate for the shortcomings of sampling and electrical resistivity tomography with conventional arrays in curtain detection. The combined array was verified by numerical simulation for barrier curtain detection. It was applied to the barrier curtain detection of a landfill. The detection results of the two barrier curtains at the landfill showed that the main body of the barrier curtain possessed a uniform and complete low resistance zone at the early stage of consolidation, ranging from 0.001 to 0.06 Ω·m, and the grouting influence radius of the two barrier curtains were 0.55 m and 0.95 m, which met the requirements of curtain thickness and integrity. Combined with the hydraulic test of the core samples, it indicated the structure of the curtain barrier material in the two measurement areas was complete. The hydraulic conductivities were less than 10-6 cm/s, meeting the hydraulic conductivity performance requirements for the contamination barrier. This study uses cross-borehole electrical resistivity tomography with the combined array to realize the efficient evaluation of the integrity and anti-seepage performance of the barrier curtain in the contaminated site.
-
[1] 中华人民共和国生态环境部.污染地块地下水修复和风险管控技术导则:HJ 25.6—2019[S],北京:中国环境出版集团,2019. [2] 汪成,陈坚,牛浩博,等.基于数值模拟的某污染地块地下水风险管控值确定[J].环境工程,2022,40(11):159-164. [3] ZHAO B,SUN Z X,LIU Y J.An overview of in-situ remediation for nitrate in groundwater[J].Science of the Total Environment,2022,804:149981. [4] 向甲甲.水泥土阻隔墙阻控地下水污染[J].环境工程,2021,39(9):63-68. [5] 王劲楠,吴玉锋,李良忠,等.场地重金属复合污染阻隔技术研究进展[J].环境工程,2022,40(4):244-253. [6] LABUS K,CICHA-SZOT R,FALKOWICZ S.Injected silicate horizontal barriers for protection of shallow groundwater:technological and geochemical issues[J].Applied Geochemistry,2020,116:104577. [7] 高全全.还原屏障的渗透性及其生物化学变化[D].兰州:兰州大学,2008. [8] 高镇.软土地区基坑防水帷幕渗漏隐患地球物理检测技术研究[D].青岛:中国海洋大学,2013. [9] 唐英杰,张卫东.井间高密度电阻率成像法检测帷幕注浆效果[J].工程勘察,2009(增刊2):462-466. [10] 曲相屹,李学良.钻、物探技术在采空区注浆效果检测中的应用[J].金属矿山,2013,42(2):151-155. [11] 环境保护部办公厅.关于征求《污染地块风险管控技术指南—阻隔技术(试行)(征求意见稿)》等3个技术文件意见的函[EB/OL].https://www.mee.gov.cn/gkml/hbb/bgth/201711/t20171129_427107.htm. [12] 邹玉,郭明珠.不同时期止水帷幕渗漏检测方法探究[J].廊坊师范学院学报(自然科学版),2021,21(1):68-70. [13] 姜文富.章丘市某厂房采空区物探和钻探综合探查[J].土工基础,2017,31(3):364-368. [14] CAO R,FENG S.Detection methods for unfavorable geology and soil caves before grouting in karst terrains[J].Soil Mechanics and Foundation Engineering,2021,58(4):308-313. [15] 胡玉禄,张景康,胡红文.纯粘土地下连续墙技术在污染防渗治理工程中的应用[J].中国地质灾害与防治学报,1999,10(2):91-95. [16] 朱水元,单华伦,孙雨清.七子山垃圾填埋场垂直防渗系统对环境污染的阻滞作用研究[J].环境工程,2009,27(增刊1):341-345. [17] 张波,王万顺,范运岭,等.高速公路下伏采空区治理工程质量检测方法研究[J].中国煤田地质,2004,16(5):53-58. [18] 张刚艳.煤矿采空区治理效果检测及综合评价方法研究[C]//全国矿山测量新技术学术会议,2011. [19] 能昌信,孙新宇,徐亚,等.电法在垂直柔性防渗帷幕破损检测的应用[J].环境科学与技术,2018,41(3):151-155. [20] 彭永良,胡卸文,宋大各,等.复杂采空区注浆效果物探检测方法试验研究[J].水文地质工程地质,2011,38(5):38-42. [21] 白明洲,谢晋水,张爱军,等.高速铁路路基工程岩溶注浆效果无损检测评估方法研究[J].铁道学报,2012,34(7):89-95. [22] 陈国玉,张红权,陈辉,等.瞬变电磁法在帷幕注浆效果检测中的应用[J].东华理工大学学报(自然科学版),2019,42(2):163-168. [23] 宫玉菲,杨天春,董邵宇,等.高密度电阻率法探测顶管注浆加固质量[J].物探与化探,2018,42(6):1317-1320. [24] 董亚.综合物探在库坝防渗墙完整性检测中的应用研究[D].淮南:安徽理工大学,2019. [25] LIN C H,LIN C P,NGUI Y J,et al.Diameter assessment of soilcrete column using in-hole electrical resistivity tomography[J].Géotechnique,2020,70(12):1120-1132. [26] 李阳阳,基于测井约束反演的跨孔电阻率CT在城市岩溶探测中的应用[D].济南:山东大学,2020. [27] LOKE M H,WILKINSON P B,CHAMBERS J E,et al.Optimized arrays for 2D cross-borehole electrical tomography surveys[J].Geophysical Prospecting,2013,62(1):172-189. [28] HAGREY S.2D Optimized electrode arrays for borehole resistivity tomography and CO2 sequestration modelling[J].Pure and Applied Geophysics,2012,169(7):1283-1292. [29] 宋瑞超.基岩导水裂隙带井间电阻率层析成像研究[D].济南:山东大学,2021. [30] WANG H R,LIN C P,MOK T H,et al.High-fidelity subsurface resistivity imaging incorporating borehole measurements for monitoring underground construction.Engineering Geology[J].2022,299:106558. [31] WILKINSON P B,MELDRUM P I,CHAMBERS J E,et al.Improved strategies for the automatic selection of optimized sets of electrical resistivity tomography measurement configurations[J].Geophysical Journal International,2006,167:1119-1126. [32] LOKE M H.The inversion of two-dimensional apparent resistivity data[D].Un.of Birmingham (U.K.),1994. [33] LOKE M H,BARKER R D.Rapid least squares inversion of apparent resistivity pseudosections by a quasi-Newton method[J].Geophysical Prospecting,1996,44:131-152. [34] 韩学辉,郭俊鑫,毛新军,等.泥质砂岩黏土附加导电强度评价指数定义及应用方法[J].地球物理学报,2019,62(11):4462-4471. [35] 李秦磊,李义连,姜凤成.基于膨润土的阻隔帷幕材料研究现状[J].安全与环境工程,2022,29(1):163-168. [36] 范日东.重金属作用下土—膨润土竖向隔离屏障化学相容性和防渗截污性能研究[D].南京:东南大学,2017. [37] 邹友平.煤矿采空区高掺量粉煤灰注浆扩散机理及应用[D].北京:煤炭科学研究总院,2016.
点击查看大图
计量
- 文章访问数: 158
- HTML全文浏览量: 26
- PDF下载量: 7
- 被引次数: 0