CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高铁酸盐在饮用水处理中的研究进展

赵晓娜 李洋 王鲁 刘玉蕾 黄壮松 马军

赵晓娜, 李洋, 王鲁, 刘玉蕾, 黄壮松, 马军. 高铁酸盐在饮用水处理中的研究进展[J]. 环境工程, 2023, 41(9): 18-28. doi: 10.13205/j.hjgc.202309003
引用本文: 赵晓娜, 李洋, 王鲁, 刘玉蕾, 黄壮松, 马军. 高铁酸盐在饮用水处理中的研究进展[J]. 环境工程, 2023, 41(9): 18-28. doi: 10.13205/j.hjgc.202309003
ZHAO Xiaona, LI Yang, WANG Lu, LIU Yulei, HUANG Zhuangsong, MA Jun. RESEARCH PROGRESS OF FERRATE IN DRINKING WATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 18-28. doi: 10.13205/j.hjgc.202309003
Citation: ZHAO Xiaona, LI Yang, WANG Lu, LIU Yulei, HUANG Zhuangsong, MA Jun. RESEARCH PROGRESS OF FERRATE IN DRINKING WATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 18-28. doi: 10.13205/j.hjgc.202309003

高铁酸盐在饮用水处理中的研究进展

doi: 10.13205/j.hjgc.202309003
基金项目: 

国家重点研发计划"生物安全理化防护及复杂环境洗消技术与装备"(2021YFC2600303)

详细信息
    作者简介:

    赵晓娜(1997-),女,研究生,主要研究方向为高铁酸盐氧化技术。

    通讯作者:

    王鲁(1988-),男,教授,主要研究方向为水处理功能材料制备与应用。wanglu9195@163.com

RESEARCH PROGRESS OF FERRATE IN DRINKING WATER TREATMENT

  • 摘要: 随着水生态环境污染问题的加重和人们对饮用水安全的日益重视,亟需研发更高效、低碳、能够适用于复杂污染水体的水处理工艺。作为一种绿色多功能的水处理药剂,高铁酸盐在饮用水处理中具有广阔的应用前景。主要综述了近年来高铁酸盐Fe (Ⅵ)在饮用水处理领域的研究进展,重点介绍了Fe (Ⅵ)的氧化特性和反应机制,以及Fe (Ⅵ)还原生成的铁(氢)氧化物颗粒的吸附特性,阐述了强化Fe (Ⅵ)氧化和吸附效能的调控策略,综合讨论了Fe (Ⅵ)在氧化去除有机污染物、控制消毒副产物生成、去除水中重金属离子、强化混凝和缓解膜污染等方面的处理效果和作用机制,并对Fe (Ⅵ)在饮用水处理中的应用前景和发展趋势进行了展望。
  • [1] SUN S, LIU Y, MA J, et al. Transformation of substituted anilines by ferrate(Ⅵ):kinetics, pathways, and effect of dissolved organic matter[J]. Chemical Engineering Journal, 2018, 332:245-252.
    [2] LEE Y, VON GUNTEN U. Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment[J]. Water Research, 2012, 46(19):6177-6195.
    [3] KAMACHI T, KOUNO T, YOSHIZAWA K. Participation of multioxidants in the pH dependence of the reactivity of ferrate(Ⅵ)[J]. The Journal of Organic Chemistry, 2005, 70(11):4380-4388.
    [4] LEE Y, YOON J, VON GUNTEN U. Kinetics of the oxidation of phenols and phenolic endocrine disruptors during water treatment with ferrate (Fe(Ⅵ))[J]. Environmental Science & Technology, 2005, 39(22):8978-8984.
    [5] KARLESA A, de VERA G A D, DODD M C, et al. Ferrate(Ⅵ) oxidation of β-lactam antibiotics:reaction kinetics, antibacterial activity changes, and transformation products[J]. Environmental Science and Technology, 2014, 48(17):10380-10389.
    [6] SHARMA V K, MISHRA S K, NESNAS N. Oxidation of sulfonamide antimicrobials by ferrate(Ⅵ)[J]. Environmental Science & Technology, 2006, 40(23):7222-7227.
    [7] SUN S, JIANG J, PANG S, et al. Oxidation of theophylline by Ferrate (Ⅵ) and formation of disinfection byproducts during subsequent chlorination[J]. Separation and Purification Technology, 2018, 201:283-290.
    [8] HU L, MARTIN H M, ARCE-BULTED O, et al. Oxidation of carbamazepine by Mn(Ⅶ) and Fe(Ⅵ):reaction kinetics and mechanism[J]. Environmental Science & Technology, 2009, 43(2):509-515.
    [9] ISLAM A, JEON D, RA J, et al. Transformation of microcystin-LR and olefinic compounds by ferrate(Ⅵ):oxidative cleavage of olefinic double bonds as the primary reaction pathway[J]. Water Research, 2018, 141:268-278.
    [10] CHEN J, WU N, XU X, et al. Fe(Ⅵ)-mediated single-electron coupling processes for the removal of chlorophene:a combined experimental and computational Study[J]. Environmental Science & Technology, 2018, 52(21):12592-12601.
    [11] ZHAO X N, HUANG Z S, WANG G J, et al. Highly efficient utilization of ferrate(Ⅵ) oxidation capacity initiated by Mn(Ⅱ) for contaminant oxidation:role of manganese species[J]. Environmental Science & Technology, 2023, 57(6):2527-2537.
    [12] KYRIAKOS M, GEORGE N, K. R A, et al. Oxidation of caffeine by acid-activated ferrate(Ⅵ):effect of ions and natural organic matter[J]. AIChE Journal, 2017, 63(11):4998-5006.
    [13] FENG M, BAUM J C, NESNAS N, et al. Oxidation of sulfonamide antibiotics of six-membered heterocyclic moiety by ferrate(Ⅵ):kinetics and mechanistic insight into SO2 extrusion[J]. Environmental Science & Technology, 2019, 53(5):2695-2704.
    [14] ZHANG X, FENG M, LUO C, et al. Effect of metal ions on oxidation of micropollutants by ferrate(Ⅵ):enhancing role of Fe(Ⅳ) species[J]. Environmental Science & Technology, 2020, 55(1):623-633.
    [15] ZHU J, YU F, MENG J, et al. Overlooked role of Fe(Ⅳ) and Fe(Ⅴ) in organic contaminant oxidation by Fe(Ⅵ)[J]. Environmental Science & Technology, 2020, 54(15):9702-9710.
    [16] WANG S, DENG Y, SHAO B, et al. Three kinetic patterns for the oxidation of emerging organic contaminants by Fe(Ⅵ):the critical roles of Fe(Ⅴ) and Fe(Ⅳ)[J]. Environmental Science & Technology, 2021, 55(16):11338-11347.
    [17] HUANG Z S, WANG L, LIU Y L, et al. Ferrate self-decomposition in water is also a self-activation process:role of Fe(Ⅴ) species and enhancement with Fe(Ⅲ) in methyl phenyl sulfoxide oxidation by excess ferrate[J]. Water Research, 2021, 197:117094.
    [18] SHARMA V K, ZBORIL R, VARMA R S. Ferrates:Greener oxidants with multimodal action in water treatment technologies[J]. Accounts of Chemical Research, 2015, 48(2):182-191.
    [19] Sharma V K. Oxidation of inorganic contaminants by ferrates(Ⅵ, Ⅴ, and Ⅳ)-kinetics and mechanisms:a review[J]. Journal of Environmental Management, 2011, 92(4):1051-1073.
    [20] FENG M, JINADATHA C, MCDONALD T J, et al. Accelerated oxidation of organic contaminants by ferrate(Ⅵ):the overlooked role of reducing additives[J]. Environmental Science & Technology, 2018, 52(19):11319-11327.
    [21] 黄壮松. K2FeO4氧化污染物过程高价态铁的转化行为及其强化机制[D]. 哈尔滨:哈尔滨工业大学, 2022.
    [22] SHAO B, DONG H, SUN B, et al. Role of ferrate(Ⅳ) and ferrate(Ⅴ) in activating ferrate(Ⅵ) by calcium sulfite for enhanced oxidation of organic contaminants[J]. Environmental Science & Technology, 2019, 53(2):894-902.
    [23] TIAN S Q, WANG L, LIU Y L, et al. Degradation of organic pollutants by ferrate/biochar:enhanced formation of strong intermediate oxidative iron species[J]. Water Research, 2020, 183:116054.
    [24] PAN B, FENG M, MCDONALD T J, et al. Enhanced ferrate(Ⅵ) oxidation of micropollutants in water by carbonaceous materials:elucidating surface functionality[J]. Chemical Engineering Journal, 2020, 398:125607.
    [25] LUO M, ZHANG H, ZHOU P, et al. Graphite (GP) induced activation of ferrate(Ⅵ) for degradation of micropollutants:the crucial reduction role of carbonyl groups on GP surface[J]. Journal of Hazardous Materials, 2022, 434:128827.
    [26] SUN S F, JIANG J, QIU L P, et al. Activation of ferrate by carbon nanotube for enhanced degradation of bromophenols:kinetics, products, and involvement of Fe(Ⅴ)/Fe(Ⅳ)[J]. Water Research, 2019, 156:1-8.
    [27] LEE Y, KISSNER R, VON GUNTEN U. Reaction of ferrate(Ⅵ) with ABTS and self-decay of ferrate(Ⅵ):kinetics and mechanisms[J]. Environmental Science & Technology, 2014, 48(9):5154-5162.
    [28] LUO M, ZHOU H, ZHOU P, et al. Insights into the role of in-situ and ex-situ hydrogen peroxide for enhanced ferrate(Ⅵ) towards oxidation of organic contaminants[J]. Water Research, 2021, 203:117548.
    [29] WU S, LI H, LI X, et al. Performances and mechanisms of efficient degradation of atrazine using peroxymonosulfate and ferrate as oxidants[J]. Chemical Engineering Journal, 2018, 353:533-541.
    [30] 韩琦. 臭氧和高铁酸盐氧化降解水中四溴双酚A的效能与机制[D]. 深圳:哈尔滨工业大学(深圳), 2018.
    [31] HE H, LIU Y, WANG L, et al. Novel activated system of ferrate oxidation on organic substances degradation:Fe(Ⅵ) regeneration or Fe(Ⅵ) reduction[J]. Separation and Purification Technology, 2023, 304:122322.
    [32] LUO M, ZHANG H, ZHOU P, et al. Efficient activation of ferrate(Ⅵ) by colloid manganese dioxide:comprehensive elucidation of the surface-promoted mechanism[J]. Water Research, 2022, 215:118243.
    [33] MANOLI K, LI R, KIM J, et al. Ferrate(Ⅵ)-peracetic acid oxidation process:rapid degradation of pharmaceuticals in water[J]. Chemical Engineering Journal, 2022, 429:132384.
    [34] WANG J, KIM J, ASHLEY D C, et al. Peracetic acid enhances micropollutant degradation by ferrate(Ⅵ) through promotion of electron transfer efficiency[J]. Environmental Science & Technology, 2022, 56(16):11683-11693.
    [35] YANG T, MAI J, CHENG H, et al. UVA-LED-assisted activation of the ferrate(Ⅵ) process for enhanced micropollutant degradation:important role of ferrate(Ⅳ) and ferrate(Ⅴ)[J]. Environmental Science & Technology, 2021, 56(2):1221-1232.
    [36] MAI J, YANG T, MA J. Novel solar-driven ferrate(Ⅵ) activation system for micropollutant degradation:elucidating the role of Fe(Ⅳ) and Fe(Ⅴ)[J]. Journal of Hazardous Materials, 2022, 437:129428.
    [37] GAN W, SHARMA V K, ZHANG X, et al. Investigation of disinfection byproducts formation in ferrate(Ⅵ) pre-oxidation of NOM and its model compounds followed by chlorination[J]. Journal of Hazardous Materials, 2015, 292:197-204.
    [38] JIANG Y, GOODWILL J E, TOBIASON J E, et al. Comparison of ferrate and ozone pre-oxidation on disinfection byproduct formation from chlorination and chloramination[J]. Water Research, 2019, 156:110-124.
    [39] LIU J, LUJAN H, DHUNGANA B, et al. Ferrate(Ⅵ) pretreatment before disinfection:an effective approach to controlling unsaturated and aromatic halo-disinfection byproducts in chlorinated and chloraminated drinking waters[J]. Environment international, 2020, 138:105641.
    [40] HUANG X, DENG Y, LIU S, et al. Formation of bromate during ferrate(Ⅵ) oxidation of bromide in water[J]. Chemosphere, 2016, 155:528-533.
    [41] JIANG Y, GOODWILL J E, TOBIASON J E, et al. Bromide oxidation by ferrate(Ⅵ):the formation of active bromine and bromate[J]. Water Research, 2016, 96:188-197.
    [42] LI G, JIANG J, HE M, et al. Enhancing ferrate oxidation of micropollutants via inducing Fe(Ⅴ)/Fe(Ⅳ) formation needs caution:increased conversion of bromide to bromate[J]. Environmental Science & Technology, 2023.
    [43] DONG H, QIANG Z, RICHARDSON S D. Formation of iodinated disinfection byproducts (I-DBPs) in drinking water:emerging concerns and current issues[J]. Accounts of Chemical Research, 2019, 52(4):896-905.
    [44] SHIN J, VON GUNTEN U, RECKHOW D A, et al. Reactions of ferrate(Ⅵ) with iodide and hypoiodous acid:kinetics, pathways, and implications for the fate of iodine during water treatment[J]. Environmental Science & Technology, 2018, 52(13):7458-7467.
    [45] WANG X, LIU Y, HUANG Z, et al. Rapid oxidation of iodide and hypoiodous acid with ferrate and no formation of iodoform and monoiodoacetic acid in the ferrate/I-/HA system[J]. Water Research, 2018, 144:592-602.
    [46] WANG X S, LIU Y L, XU S Y, et al. Ferrate oxidation of phenolic compounds in iodine-containing water:control of iodinated aromatic products[J]. Environmental Science & Technology, 2019, 54(3):1827-1836.
    [47] WANG X S, LIU Y L, LI M, et al. Occurrence of iodophenols in aquatic environments and the deiodination of organic iodine with ferrate(Ⅵ)[J]. Environmental Science & Technology, 2022, 56(22):16104-16114.
    [48] YANG T, WANG L, LIU Y, et al. Removal of organoarsenic with ferrate and ferrate resultant nanoparticles:oxidation and adsorption[J]. Environmental Science & Technology, 2018, 52(22):13325-13335.
    [49] GOODWILL J E, JIANG Y, RECKHOW D A, et al. Characterization of particles from ferrate preoxidation[J]. Environmental Science & Technology, 2015, 49(8):4955-4962.
    [50] 何世鼎, 李海宁, 王凯凯, 等. 高铁酸盐去除废水中重金属及其他污染物的研究进展[J]. 工业水处理, 2019, 39(5):5-9.
    [51] KRALCHEVSKA R P, PRUCEK R, KOLARIK J, et al. Remarkable efficiency of phosphate removal:ferrate(Ⅵ)-induced in situ sorption on core-shell nanoparticles[J]. Water Research, 2016, 103:83-91.
    [52] LAN B, WANG Y, WANG X, et al. Aqueous arsenic(As) and antimony(Sb) removal by potassium ferrate[J]. Chemical Engineering Journal, 2016, 292:389-397.
    [53] PRUCEK R, TUČEK J, KOLAŘÍK J, et al. Ferrate(Ⅵ)-prompted removal of metals in aqueous media:mechanistic delineation of enhanced efficiency via metal entrenchment in magnetic oxides[J]. Environmental Science & Technology, 2015, 49(4):2319-2327.
    [54] VIKTOR Z, WANG L, MA J. Promotional effect of Mn(Ⅱ)/K2FeO4 applying onto Se(Ⅳ) removal[J]. Journal of Hazardous Materials, 2020, 384:121264.
    [55] 刘玉蕾. 高铁酸钾的制备及去除水中铊、吲哚和处理污水厂污泥的效果与机理[D]. 哈尔滨:哈尔滨工业大学, 2018.
    [56] MA J, LIU W. Effectiveness of ferrate (Ⅵ) preoxidation in enhancing the coagulation of surface waters[J]. Water Research, 2002, 36(20):4959-4962.
    [57] 曲久辉, 林谡, 田宝珍, 等. 高铁酸盐氧化絮凝去除水中腐殖质的研究[J]. 环境科学学报, 1999, (5):510-514.
    [58] 李春娟, 马军, 梁涛. 高铁酸盐预氧化对松花江水混凝效果的影响[J]. 环境科学, 2008, (6):1550-1554.
    [59] MA J, LIU W. Effectiveness and mechanism of potassium ferrate(Ⅵ) preoxidation for algae removal by coagulation[J]. Water Research, 2002, 36(4):871-878.
    [60] 张忠祥, 宋浩然, 张伟, 等. 高铁酸钾预氧化强化混凝除藻效能及机理研究[J]. 中国给水排水, 2019, 35(15):31-36.
    [61] LIU J, HE K, TANG S, et al. A comparative study of ferrous, ferric and ferrate pretreatment for ceramic membrane fouling alleviation in reclaimed water treatment[J]. Separation and Purification Technology, 2019, 217:118-127.
    [62] LIU J, ZHANG Z, LIU Z, et al. Integration of ferrate (Ⅵ) pretreatment and ceramic membrane reactor for membrane fouling mitigation in reclaimed water treatment[J]. Journal of Membrane Science, 2018, 552:315-325.
    [63] LIU J, ZHANG Z, CHEN Q, et al. Synergistic effect of ferrate (Ⅵ)-ozone integrated pretreatment on the improvement of water quality and fouling alleviation of ceramic UF membrane in reclaimed water treatment[J]. Journal of Membrane Science, 2018, 567:216-227.
    [64] HE H Y, QIU W, LIU Y L, et al. Ferrate preoxidation alleviating membrane fouling through the formation of a hydrophilic prefiltration layer[J]. ACS ES&T Engineering, 2021, 1(11):1576-1586.
    [65] YU W, YANG Y, GRAHAM N. Evaluation of ferrate as a coagulant aid/oxidant pretreatment for mitigating submerged ultrafiltration membrane fouling in drinking water treatment[J]. Chemical Engineering Journal, 2016, 298:234-242.
    [66] HE H Y, QIU W, LIU Y L, et al. Effect of ferrate pre-oxidation on algae-laden water ultrafiltration:attenuating membrane fouling and decreasing formation potential of disinfection byproducts[J]. Water Research, 2021, 190:116690.
  • 加载中
计量
  • 文章访问数:  384
  • HTML全文浏览量:  68
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-10
  • 网络出版日期:  2023-11-15

目录

    /

    返回文章
    返回