THE WHOLE-LIFE CYCLE PREVENTION AND CONTROL OF HEAVY METAL POLLUTION: CHALLENGES AND OPPORTUNITIES
-
摘要: 重金属在生产和消费过程中进入环境,形成了复杂、动态、长链条的迁移体系,严重威胁着生态平衡和人体健康。以单一介质和因子为对象的传统防治理论体系,已难以满足当前重金属污染防治需求。因此,同步考虑多环境介质、多污染因子,建立系统性的重金属污染防治理论,成为发展新一代污染防治技术的核心。基于我国当前重金属污染特点和污染防治理论与技术现状,围绕全生命周期理念,提出构建重金属污染物"溯源-辨析-转化-回归"的全链条防治理论体系的思考。首先概括了目前重金属污染防治理论与技术面临的局限,进而点明了重金属污染防治技术创新所面临的五大挑战,最后围绕全生命周期理念的核心环节,探讨了应对上述挑战的可行途径,并对未来的发展方向作出展望。总体上,随着相关理论和方法的不断研究,关键技术的不断突破,重金属污染全生命周期防治模型与理论方法的构建将为我国重金属污染环境质量改善与管理技术创新提供重大理论支撑。Abstract: Heavy metals enter the environment in the process of production and consumption, form a complex, dynamic, and long-chain migration system, which seriously threatens the ecological balance and human health. The traditional prevention and control system with a single medium and factor as the object is difficult to realize the comprehensive innovation of technologies for the prevention and control of heavy metal pollution. Establishing a systematic theory, which synchronously includes the effects of multi-media and multi-factor, has become the core of developing the new generation of technologies. Herein, based on the current characteristics of heavy metal pollution and the theoretical and technological research status of pollution prevention and control in China, a thought of constructing the whole chain of heavy metal pollution prevention and control theory involved "traceability-discrimination-transformation-regression" was proposed centering on the whole life cycle concept. The limitations in the theoretical and technical research of heavy metal pollution control were first generalized. Five major challenges in the development of novel technology for heavy metal pollution prevention and control were subsequently summarized. The feasibility of the research on whole-life cycle prevention and control systems of heavy metal pollution to meet these challenges was discussed. Finally, the future development direction of heavy metal pollution prevention and control was further prospected. In short, with continuous research of relevant theories and methods and continuous breakthrough of key technologies, the construction of the whole-life cycle model and theoretical method for prevention and control of heavy metal pollution will provide significant theoretical support for improving the quality environment with heavy metal pollution and developing novel management technology in China.
-
Key words:
- heavy metal /
- whole-life cycle /
- remote sensing spectrum /
- big data /
- phase regulation /
- biomineralization
-
[1] LARSON C. Environmental science China gets serious about its pollutant-laden soil[J]. Science, 2014, 343(6178):1415-1416. [2] MAHOWALD N M, HAMILTON D S, MACKEY K R M, et al. Aerosol trace metal leaching and impacts on marine microorganisms[J]. Nature Communications, 2018, 9:15. [3] LING L, ZHANG W X. Enrichment and encapsulation of uranium with iron nanoparticle[J]. Journal of the American Chemical Society, 2015, 137(8):2788-2791. [4] SASLOW S K, UM W, PEARCE C I, et al. Reduction and simultaneous removal of 99Tc and Cr by Fe(OH)2 (s) mineral transformation[J]. Environmental Science & Technology, 2017, 51(15):8635-8642. [5] CATALANO J G, HUHMANN B L, LUO Y, et al. Metal release and speciation changes during wet aging of coal fly ashes[J]. Environmental Science & Technology, 2012, 46(21):11804-11812. [6] 王吉位. 中国有色金属再生利用的现状与发展前景[J]. 有色金属再生与利用, 2003(11):8-10. [7] ZHANG L, GAO Y, WU S L, et al. Global impact of atmospheric arsenic on health risk:2005 to 2015[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(25):13975-13982. [8] KONG L H, HU X Y, PENG X J, et al. Specific H2S release from thiosulfate promoted by UV irradiation for removal of arsenic and heavy metals from strongly acidic wastewater[J]. Environmental Science & Technology, 2020, 54(21):14076-14084. [9] ZENG X L, ALI S H, TIAN J P, et al. Mapping anthropogenic mineral generation in China and its implications for a circular economy[J]. Nature Communications, 2020, 11(1):9. [10] SCHLESINGER W H, KLEIN E M, VENGOSH A. Global biogeochemical cycle of vanadium[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(52):E11092-E11100. [11] AMOS H M, JACOB D J, STREETS D G, et al. Legacy impacts of all-time anthropogenic emissions on the global mercury cycle[J]. Global Biogeochemical Cycles, 2013, 27(2):410-421. [12] KANG Z M, WANG S L, QIN J H, et al. Pollution characteristics and ecological risk assessment of heavy metals in paddy fields of Fujian province, China[J]. Scientific Reports, 2020, 10(1):10. [13] PEEPLES L. How air pollution threatens brain health[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(25):13856-13860. [14] 生态环境部. 2019中国生态环境状况公报[R].北京:生态环境部, 2019. [15] QIN G W, NIU Z D, YU J D, et al. Soil heavy metal pollution and food safety in China:effects, sources and removing technology[J]. Chemosphere, 2021, 267:12. [16] YANG X, YANG Y, WAN Y Y, et al. Source identification and comprehensive apportionment of the accumulation of soil heavy metals by integrating pollution landscapes, pathways, and receptors[J]. Science of the Total Environment, 2021, 786:11. [17] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[R].北京:环境保护部, 国土资源部, 2014. [18] 于旦洋, 王颜红, 丁茯, 等. 近十年来我国土壤重金属污染源解析方法比较[J]. 土壤通报, 2021, 52:1000-1008. [19] ELZWAYIE A, AFAN H A, ALLAWI M F, et al. Heavy metal monitoring, analysis and prediction in lakes and rivers:state of the art[J]. Environmental Science and Pollution Research, 2017, 24(13):12104-12117. [20] JIA X Y, O'CONNOR D, SHI Z, et al. Virs based detection in combination with machine learning for mapping soil pollution[J]. Environmental Pollution, 2021, 268:13. [21] LIU X, LU D, ZHANG A, et al. Data-driven machine learning in environmental pollution:gains and problems[J]. Environmental Science & Technology, 2022, 56(4):2124-2133. [22] WANG P, HU J, LIU T, et al. Advances in the application of metallic isotopes to the identification of contaminant sources in environmental geochemistry[J]. Journal of Hazardous Materials, 2023, 458:131913. [23] YANG H R, HUANG K, ZHANG K, et al. Predicting heavy metal adsorption on soil with machine learning and mapping global distribution of soil adsorption capacities[J]. Environmental Science & Technology, 2021, 55(20):14316-14328. [24] PODGORSKI J, BERG M. Global threat of arsenic in groundwater[J]. Science, 2020, 368(6493):845. [25] FAO. Global Assessment of Soil Pollution:Report[R].Rome:FAO, 2021. [26] 夏志先, 赵九娟, 张金山, 等. 土壤重金属污染现状、危害以及化学修复稳定药剂研究进展[J]. 上海化工, 2017, 42:24-29. [27] 王玉晶, 石一辰, 聂晶磊, 等. 尾矿污染防治的进展、问题与对策建议[J]. 环境保护, 2022, 50:52-55. [28] 倪晓坤, 封雪, 于勇, 等. 典型固废处理处置场周边土壤重金属污染特征和成因分析[J]. 农业环境科学学报, 2019, 38:2146-2156. [29] KAN X Q, DONG Y Q, FENG L, et al. Contamination and health risk assessment of heavy metals in China's lead-zinc mine tailings:a meta-analysis[J]. Chemosphere, 2021, 267:9. [30] 王海北, 邹小平, 谢铿, 等. 典型固废资源化与无害化处置技术[J]. 有色金属(冶炼部分), 2022:1-8. [31] 马淑杰. 新征程下大宗固废综合利用产业发展研究[J]. 中国矿业, 2023, 32:10-18. [32] ZHAO Z Z, LIU W H, JIANG Y W, et al. Solidification of heavy metals in lead smelting slag and development of cementitious materials[J]. Journal of Cleaner Production, 2022, 359:10. [33] CHEN L, WANG Y S, WANG L, et al. Stabilisation/solidification of municipal solid waste incineration fly ash by phosphate-enhanced calcium aluminate cement[J]. Journal of Hazardous Materials, 2021, 408:9. [34] 陈玉鹏, 梁东丽, 刘中华, 等. 大棚蔬菜土壤重金属污染及其控制的研究进展与展望[J]. 农业环境科学学报, 2018, 37:9-17. [35] WANG F, HUO L L, LI Y, et al. A hybrid framework for delineating the migration route of soil heavy metal pollution by heavy metal similarity calculation and machine learning method[J]. Science of the Total Environment, 2023, 858:10. [36] SHI J D, ZHAO D, REN F T, et al. Spatiotemporal variation of soil heavy metals in China:the pollution status and risk assessment[J]. Science of the Total Environment, 2023, 871:13. [37] ZHANG M, SUN X, XU J L. Heavy metal pollution in the East China Sea:a review[J]. Marine Pollution Bulletin, 2020, 159:11. [38] XU Y F, WU Y, HAN J G, et al. The current status of heavy metal in lake sediments from China:pollution and ecological risk assessment[J]. Ecology and Evolution, 2017, 7(14):5454-5466. [39] RAM S S, MAJUMDER S, CHAUDHURI P, et al. A review on air pollution monitoring and management using plants with special reference to foliar dust adsorption and physiological stress responses[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(23):2489-2522. [40] 章骅, 姚其生, 朱钰敏, 等. 固体废物重金属污染源解析技术研究进展[J]. 科学通报, 2012, 57:3132-3138. [41] MALLEY D F, WILLIAMS P C. Use of near-infrared reflectance spectroscopy in prediction of heavy metals in freshwater sediment by their association with organic matter[J]. Environmental Science & Technology, 1997, 31:3461-3467. [42] KOOISTRA L, WEHRENS R, LEUVEN R, et al. Possibilities of visible-near-infrared spectroscopy for the assessment of soil contamination in river floodplains[J]. Analytica Chimica Acta, 2001, 446(1/2):97-105. [43] MOROS J, DE VALLEJUELO S F O, GREDILLA A, et al. Use of reflectance infrared spectroscopy for monitoring the metal content of the estuarine sediments of the Nerbioi-Ibaizabal River (Metropolitan Bilbao, Bay of Biscay, Basque Country)[J]. Environmental Science & Technology, 2009, 43(24):9314-9320. [44] SIEBIELEC G, MCCARTHY G W, STUCZYNSKI T I, et al. Near- and mid-infrared diffuse reflectance spectroscopy for measuring soil metal content[J]. Journal of Environmental Quality, 2004, 33(6):2056-2069. [45] LIU G, ZHOU X, LI Q, et al. Spatial distribution prediction of soil As in a large-scale arsenic slag contaminated site based on an integrated model and multi-source environmental data[J]. Environmental Pollution, 2020, 267. [46] ZOU B, JIANG X L, FENG H H, et al. Multisource spectral-integrated estimation of cadmium concentrations in soil using a direct standardization and spiking algorithm[J]. Science of the Total Environment, 2020, 701. [47] 邬娜, 张晓敏, 吴佳, 等. 有色金属工业固废资源属性多维度评价体系构建:以锡尾矿为例[J]. 中国环境管理, 2022, 14:143-148. [48] 林乐, 刘学明, 梁彦杰, 等. 数据科学与化学交叉视域下的重金属危废物相分析[J]. 化学进展, 2021, 33:2163-2172. [49] ZHENG J S, WU M T, YASEEN Z M, et al. Machine learning models for occurrence form prediction of heavy metals in tailings[J]. International Journal of Mining Reclamation and Environment, 2023:18. [50] LIU W Z, WENG C Z, ZHENG J Y, et al. Emerging investigator series:treatment and recycling of heavy metals from nanosludge[J]. Environmental Science-Nano, 2019, 6(6):1657-1673. [51] ZHENG J Y, LV J X, LIU W Z, et al. Selective recovery of Cr from electroplating nanosludge via crystal modification and dilute acid leaching[J]. Environmental Science-Nano, 2020, 7(5):1593-1601. [52] BANFIELD J F, BARKER W W, WELCH S A, et al. Biological impact on mineral dissolution:application of the lichen model to understanding mineral weathering in the rhizosphere[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7):3404-3411. [53] LEVETT A, GAGEN E J, ZHAO Y T, et al. Biocement stabilization of an experimental-scale artificial slope and the reformation of iron-rich crusts[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(31):18347-18354. [54] YI Q, WU S L, LIU Y J, et al. Mineral weathering of iron ore tailings primed by Acidithiobacillus ferrooxidans and elemental sulfur under contrasting pH conditions[J]. Science of the Total Environment, 2023:856.
点击查看大图
计量
- 文章访问数: 265
- HTML全文浏览量: 42
- PDF下载量: 18
- 被引次数: 0