ECOLOGICAL-ENVIRONMENTAL EFFECTS OF RIVER-LAKE HYDROLOGICAL CONNECTIVITY PROJECTS IN URBAN-RURAL AREAS
-
摘要: 城乡河湖水系在防洪排涝、水量保障、水质改善、景观文化等方面发挥着巨大的功能和价值。在高强度人类活动和气候变化影响下,河湖水系受到了多重胁迫,严重影响了河湖生态功能的正常发挥。为了复苏河湖生态,国内外开展了大量的河湖水系连通工程实践。尽管城乡河湖水系连通工程取得了系列成就,但其直接或间接带来的滞后性的生态环境负面影响也相继显现,在部分区域加剧了原有的生态环境问题。因此,以城乡河湖水系演变与驱动为切入点,重点关注城乡河湖水系连通工程对水量、水质、水热、水盐、水生态等带来的正负生态环境效应,并提出了未来的主要研究趋势。研究可为未来城乡河湖水系连通工程减缓或消除负效应、强化正效应提供科学基础。Abstract: Urban-rural rivers and lakes exert tremendous functionality and value in flood control and drainage, water supply assurance, water quality improvement, landscape culture service, etc. However, the increasing impact of intense human activities and climate change poses multiple stressors on river-lake systems, severely disrupting their ecological functions. To resuscitate the ecological health of rivers and lakes, numerous river-lake hydrological connectivity projects have been implemented both domestically and internationally. Despite achieving a series of accomplishments, the connectivity projects have also revealed delayed ecological and environmental negative impacts, exacerbating pre-existing ecological issues in certain regions. Therefore, this study focuses on the evolution and drivers of urban-rural rivers and lakes system, with a particular emphasis on clarifying the positive and negative eco-environmental effects of urban-rural rivers and lakes connectivity on water quantity, quality, temperature, salinity, and ecology, and further proposes future research trends. The study could provide a scientific basis for mitigating or eliminating the negative effects and enhancing the positive effects of urban-rural rivers and lakes connectivity in the future.
-
[1] 崔国韬, 左其亭, 窦明.国内外河湖水系连通发展沿革与影响[J].南水北调与水利科技, 2011, 9(4):73-76. [2] GRIGG N S. Large-scale water development in the United States:TVA and the California State water project[J]. International Journal of Water Resources Development, 2021, 39(1):70-88. [3] PANOV V E, ALEXANDROV B, ARBǍCIAUSKAS K, et al. Assessing the risks of aquatic species invasions via European Inland waterways:from concepts to environmental indicators[J]. Integr Environ Assess Manag, 2009, 5:110-126. [4] 狄高健, 韩雷, 田振华, 等.基于连通功能的河湖水系连通国内相关案例分析[J].水利科学与寒区工程, 2018, 1(1):19-22. [5] 李原园, 李宗礼, 黄火键, 等.河湖水系连通演变过程及驱动因子[J].资源科学, 2014, 36(6):1152-1157. [6] 中华人民共和国水利部.对十三届全国人大二次会议第1318号建议的答复[EB/OL]. 2019. http://www.mwr.gov.cn/zwgk/gknr/201910/t20191029_1441072.html. [7] 水利部办公厅财政部办公厅关于公布2021年水系连通及水美乡村建设试点县名单的通知[EB/OL].2021.http://www.mwr.gov.cn/zwgk/gknr/202106/t20210604_1521349.html. [8] 水利部办公厅财政部办公厅关于公布2022年水系连通及水美乡村建设试点县名单的通知[EB/OL].2021. http://www.mwr.gov.cn/zwgk/gknr/202111/t20211112_1551322.html. [9] 水利部办公厅财政部办公厅关于公布2023-2024年水系连通及水美乡村建设县名单的通知[EB/OL].2022. http://www.mwr.gov.cn/zwgk/gknr/202211/t20221110_1604057.html. [10] 中华人民共和国中央人民政府.中共中央国务院引发《国家水网建设规划纲要》[EB/OL].2023. https://www.gov.cn/zhengce/202305/content_6876214.htm. [11] 王中根, 李宗礼, 刘昌明, 等.河湖水系连通的理论探讨[J].自然资源学报, 2011(3):523-529. [12] 李宗礼, 李原园, 王中根, 等.河湖水系连通理论基础与优先领域[J].地理学报, 2021, 76(3):513-524. [13] 孙静月, 肖宜, 张利平, 等.武汉市梁子湖-汤逊湖水系连通工程效果分析[J].武汉大学学报(工学版), 2018, 51(2):125-131. [14] ZHOU H, CHEN Y, YE Z, et al. River-lake system connectivity effectively reduced the salinity of lake water in Bosten Lake[J]. Northwest China. Water, 2022, 14:4002. [15] BRACKEN L J, CROKE J. The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems[J]. Hydrological Processes, 2007, 21(13):1749-1763. [16] MERENLENDER A M, MATELLA M K. Maintaining and restoring hydrologic habitat connectivity in Mediterranean streams:an integrated modeling framework[J]. Hydrobiologia, 2013, 719(1):509-525. [17] GRILL G, LEHNER B, THIEME M, et al. Mapping the world's free-flowing rivers[J]. Nature, 2019, 569:215-221. [18] 杨晓巍.农村小河流综合治理研究[D].南昌:南昌大学, 2015. [19] TERINK W, LEIJNSE H, van den EERTWEGH G, et al. Spatial resolutions in areal rainfall estimation and their impact on hydrological simulations of a lowland catchment[J]. Journal of Hydrology, 2018, 563:319-335. [20] SHAO Z, FU H, LI D, et al. Remote sensing monitoring of multi-scale watersheds impermeability for urban hydrological evaluation[J]. Remote Sensing of Environment, 2019, 232:111338. [21] WANG R, COLOMBERA L, MOUNTNEY N P. Quantitative analysis of the stratigraphic architecture of incised-valley fills:a global comparison of Quaternary systems[J]. Earth-Science Reviews, 2020, 200:102988. [22] O'GRADY J, ZHANG D, O'CONNOR N, et al. A comprehensive review of catchment water quality monitoring using a tiered framework of integrated sensing technologies[J]. Science of the Total Environment, 2021, 765:142766. [23] STUART M B, MCGONIGLE A J, WILLMOTT J R. Hyperspectral imaging in environmental monitoring:a review of recent developments and technological advances in compact field deployable systems[J]. Sensors, 2019, 19(14):3071. [24] SCHEINGROSS J S, LIMAYE A B, MCCOY S W, et al. The shaping of erosional landscapes by internal dynamics[J]. Nature Reviews Earth & Environment, 2020, 1(12):661-676. [25] 赵进勇, 丁洋, 张晶, 等.区域河湖水系连通工程的生态学意义[J].中国水利, 2022(12):14-17. [26] TIRPAK R A, AFROOZ A N, WINSTON R J, et al. Conventional and amended bioretention soil media for targeted pollutant treatment:a critical review to guide the state of the practice[J]. Water Research, 2021, 189:116648. [27] 赵进勇, 彭文启, 丁洋, 等.流域视角下的城乡河湖水环境治理"三全三可" 策略及案例分析[J]. 中国水利, 2020(23):9-13. [28] HUNT A G, FAYBISHENKO B, GHANBARIAN B. Predicting characteristics of the water cycle from scaling relationships[J]. Water Resources Research, 2021, 57(9):e2021WR030808. [29] LI Z, YAN C, BOOTA M W. Review and outlook of river morphology expression[J]. Journal of Water and Climate Change, 2022, 13(4):1725-1747. [30] PAPANGELAKIS E, MACVICAR B, ASHMORE P. Bedload sediment transport regimes of semi-alluvial rivers conditioned by urbanization and stormwater management[J]. Water Resources Research, 2019, 55(12), 10565-10587. [31] SHAW B J, van VLIET J, VERBURG P H. The peri-urbanization of Europe:a systematic review of a multifaceted process[J]. Landscape and Urban Planning, 2020, 196, 103733. [32] CAO Y, LANGDON P, CHEN X, et al. Regime shifts in shallow lake ecosystems along an urban-rural gradient in central China[J]. Science of the Total Environment, 2020, 733:139309. [33] LIU Y, CUI B, DU J, et al. A method for evaluating the longitudinal functional connectivity of a river-lake-marsh system and its application in China[J]. Hydrological Processes, 2020, 34(26):1-20. [34] 刘丹, 王烜, 李春晖, 等.水文连通性对湖泊生态环境影响的研究进展[J]. 长江流域资源与环境, 2019, 28(7):1702-1715. [35] CUI B S, WANG C F, TAO W D, et al. River channel network design for drought and flood control:a case study of the Xiaoqinghe River basin, Jinan city, China[J]. Journal of Environment Management, 2009, 90(11):3675-3686. [36] 崔国韬, 左其亨, 李宗礼, 等.河湖水系连通功能及适应性分析[J].水电能源科学, 2012, 30(2):1-5. [37] 陈欢欢.引江济太有效保护太湖流域水体安全[N].中国科学报, 2022-08-17(003). [38] 肖应辉,李乐乐.打造县域综合治水示范样板[N].中国水利报, 2023-05-30(006). [39] RAMULIFHO P, RIVERS-MOORE N, DALLAS H, et al. A conceptual framework towards more holistic freshwater conservation planning through incorporation of stream connectivity and thermal vulnerability[J]. Journal of Hydrology, 2018, 556:173-181. [40] 董芮. 水文连通性对西洞庭湖大型底栖动物群落的影响[D].北京:北京林业大学, 2020. [41] 吕乾. 鄱阳湖及其连通水域浮游动物群落时空格局[D].南昌:南昌大学, 2019. [42] JAHANISHAKIB F, SALMANMAHINY A, MIRKARIMI S H, et al. Hydrological connectivity assessment of landscape ecological network to mitigate development impacts[J]. Journal of Environmental Management, 2021, 296:113169. [43] 贺勇,张帅祯,杨彦帆.新凤河新风采[N].人民日报,2023-07-19(002). [44] 庞春妮,蒙源谋,彭丽芳."那考河模式"成就南宁内河治理全国典范[N].中国商报,2022-05-31(002). [45] 张凤, 陈彦光, 刘鹏. 京津冀城镇体系与水系结构的时空关系研究[J]. 地理科学进展, 2020, 39(3):377-388. [46] 马杏. 永定河流域生态需水及生态补偿机制研究[D]. 大连:大连理工大学, 2015. [47] 崔广柏, 陈星, 向龙, 等. 平原河网区水系连通改善水环境效果评估[J].水利学报, 2017, 48(12):1429-1437. [48] 北京市水务局. 北京市水资源公报[R]. 2021. [49] 陈昭明,王伟,赵迎等.三峡水库支流水体富营养化现状及防治策略[J].环境工程,2019,37(4):32-37. [50] 张云程, 繆萍萍, 张浩, 等.永定河系水生态空间异质性及治理策略研究[J].海河水利, 2020(1):8-12. [51] 夏军, 高扬, 左其亨, 等. 河湖水系连通特征及其利弊[J]. 地理科学进展, 2012, 31(1):26-31. [52] WU Y, SONG S, CHEN X, et al. Source-specific ecological risks and critical source identification of PPCPs in surface water:comparing urban and rural areas[J]. Science of the Total Environment, 2023, 854, 158792. [53] PARK E, LATRUBESSE E M. The hydro-geomorphologic complexity of the lower Amazon River floodplain and hydrological connectivity assessed by remote sensing and field control[J]. Remote Sensing of Environment, 2017, 198:321-332. [54] 柳恒. 洞庭湖区河湖水系连通评价及其典型工程优化[D].长沙:长沙理工大学, 2021. [55] SIMPSON I M, WINSTON R J. Effects of land use on thermal enrichment of urbanstormwater and potential mitigation of runoff temperature by watershed-scale stormwatercontrol measures[J]. Ecological Engineering, 2022, 184:106792. [56] MULLIN C A, KIRCHHOFF C J, WANG G, et al. Future projections of water temperature and thermal stratification in Connecticut reservoirs and possible implications for cyanobacteria. Water Resources Research, 2020, 56(11):e2020WR027185. [57] 魏新渝, 王一川, 张琨等. 电厂温排水对水生生物影响评价综述[J]. 水生态学杂志, 2018, 39(2):1-8. [58] CROGHAN D, van LOON A F, SADLER J P, et al. Prediction of river temperature surges is dependent on precipitation method[J]. Hydrological Processes, 2019, 33(1):144-159. [59] 孙复兴. 引大入秦工程灌区盐渍化的危害与防治[J].甘肃农业, 2014(24):48-48,50. [60] 陆海明, 邹鹰, 丰华丽. 国内外典型引调水工程生态环境影响分析及启示[J]. 水利规划设计, 2018, 12:88-92,166. [61] HERING D, AROVIITA J, BAATTRUP-PEDERSEN A, et al. Contrasting the roles of section length and instream habitat enhancement for river restoration success:a field study of 20 European restoration projects[J]. Journal of Applied Ecology, 2015, 52(6):1518-1527. [62] 张丹华, 王洋, 么宁. 辽中南城市群城市化及生态效应[J]. 应用生态学报, 2022, 33(9):2521-2529. [63] LIU X, WANG H. Effects of loss of lateral hydrological connectivity on fish functional diversity[J]. Conservation Biology, 2018, 32(6):1336-1345. [64] RIVERS-MOORE N, MANTEL S, RAMULIFO P, et al. A disconnectivity index for improving choices in managing protected areas for rivers[J]. Aquatic Conservation:Marine and Freshwater Ecosystems, 2016, 26:29-38. [65] SAMPLE J E, BABER I, BADGER R. A spatially distributed risk screening tool to assess climate and land use change impacts on water-related ecosystem services[J]. Environmental Modelling & Software, 2016, 83:12-26. [66] 傅旭东, 刘婉婷, 黄跃飞. 加利福尼亚州调水工程对生态环境的负面影响[J]. 南水北调与水利科技, 2006, (6):44-46. [67] GRAZIANO M, GIORGI A, FEIJOÓ C. Multiple stressors and social-ecological traps in Pampean streams (Argentina):a conceptual model[J]. Science of the Total Environment, 2021, 765:142785. [68] BATTIN J. When good animals love bad habitats:ecological traps and the conservation of animal populations[J]. Conservation Biology, 2004, 18:1482-1491. [69] MEHDI H, LAU S C, SYNYSHYN C, et al. Municipal wastewater as an ecological trap:effects on fish communities across seasons[J]. Science of the Total Environment, 2021, 759, 143430. [70] PELICICE F M, AGOSTINHO A A. Fish-passage facilities as ecological traps in large neotropical rivers[J]. Conservation Biology, 2008, 22:180-188. [71] OHMS H A, CHARGUALAF D N, BROOKS G, et al. Poor downstream passage at a dam creates an ecological trap for migratory fish[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2022, 79(12):2204-2215. [72] LI X, BING J, ZHANG J, et al. Ecological risk assessment and sources identification of heavy metals in surface sediments of a river-reservoir system[J]. Science of the Total Environment, 2022, 842:156683. [73] 夏军, 陈进, 佘敦先, 等. 变化环境下中国现代水网建设的机遇与挑战[J]. 地理学报, 2023, 78(7):1608-1617.
点击查看大图
计量
- 文章访问数: 296
- HTML全文浏览量: 70
- PDF下载量: 10
- 被引次数: 0