SIMULATION AND OPTIMIZATION OF CARBON CAPTURE IN COAL-FIRED FLUE GAS
-
摘要: 在某电厂建设了一套万吨级有机胺法碳捕集装置,采用新型复合胺吸收剂;设计工况下,烟气流量5877 Nm3/h,吸收剂循环流量37500 kg/h,捕集效率可达97%以上,CO2产量≥1.39 t/h,再生能耗较传统MEA (单乙醇胺)降低约23%左右。依据工程设计参数建立了碳捕集系统模型,所建立的模型结果关键参数与工程实测值相对误差不超过3%;在原模型基础上,设计了含有富液分流、级间冷却和MVR闪蒸节能工艺的碳捕集系统,考察了富液分流率、级间冷却率和闪蒸真空度等关键工艺参数对碳捕集系统能耗和效益的影响。结果表明:MVR技术可降低15.45%的捕集能耗,节能效果最佳,富液分流和级间冷却节能效果在2%~4.5%。在得到各节能技术最优操作参数后,进一步考察了不同组合节能工艺的节能效果,发现级间冷却+MVR闪蒸技术节能效果最好,富液分流+MVR闪蒸技术居中,级间冷却+富液分流节能效果最小。研究结果可为燃煤电厂烟气碳捕集项目的工艺系统设计、节能降耗及运行提供一定参考。Abstract: A 10000 t/a amine-based carbon capture device was designed and constructed in a power plant, using blend amine solvent. Under the design conditions, the flue gas flow was 5877 Nm3/h, the solvent circulating flow was 37500 kg/h, the capture efficiency reached 97% above, and the CO2 output was not less than 1.39 t/h; the energy consumption for solvent regeneration decreased by 23%, compared with the traditional monoethanolamine (MEA) solvent. According to the engineering design parameters, the detailed carbon capture process was modelled, and the results reveal relative error was less than 3%, between the key parameters of the modelling and the engineering values. Furthermore, some energy-saving technologies were designed and investigated, including liquid-rich separation, interstage cooling and MVR flash. The effects of energy-saving process parameters were comprehensively explored, such as liquid-rich separation rate, interstage cooling rate and vacuum degree on energy consumption and benefits of the carbon capture system. The results showed that MVR technology could reduce the energy consumption of capture by 15.45%, and then the energy-saving effect was the best, the energy-saving effect of rich liquid diversion and interstage cooling was in a range of 2% to 4.5%. The energy-saving effect was further improved by the combined use of various technologies and optimization of operating parameters. Their energy-saving effect ranked as:interstage cooling+MVR heat pump technology>rich liquid shunt+MVR heat pump technology>energy-saving effect of interstage cooling+rich liquid shunt. The results of this study could provide some guidance for the process system design, energy saving and operation of flue gas carbon capture projects in coal-fired power plants.
-
[1] MASSON-DELMOTTE V,ZHAI P,PÖRTNER H,et al. Global Warming of 1.5℃[M/OL]. An IPCC Special Report:Summary for Policy makers; Intergovernmental Panel on Climate Change (IPCC):Geneva,2018. [2] 习近平在第七十五届联合国大会一般性辩论上发表重要讲话[N/OL].新华网.[2020-09-22]. http://www.xinhuanet.com/politics/leaders/2020-09/22/c_1126527647.htm. [3] 国务院新闻办公室. 强化应对气候变化行动:中国国家自主贡献[EB/OL].(2015-11-18) [2020-01-08]. http://www.scio.gov.cn/xwfbh/xwbfbh/wqfbh/35861/37265/xgzc37271/Document/1603661/1603661.htm. [4] 于方,宋宝华. 二氧化碳捕集技术发展动态研究[J].中国环保产业, 2009(10):27-30. [5] 康重庆,陈启鑫,夏清. 应用于电力系统的碳捕集技术及其带来的变革[J]. 电力系统自动化, 2010, 34(1):1-7. [6] 科学技术部社会发展科技司,中国21世纪议程管理中心.应对气候变化国家研究进展报告2019[M]. 北京:科学出版社, 2019. [7] 乌若思,苏文斌,郑松. 挑战全球气候变化:二氧化碳捕集与封存[M]. 北京:中国水利水电出版社, 2008:1-58. [8] LI K K, LEIGH W, FERON P, et al. Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process:techno-economic assessment of the MEA process and its improvements[J]. Applied Energy, 2016, 165:648-659. [9] OH S Y, KIM J K. Operational optimization for part-load performance of amine-based post-combustion CO2 capture processes[J]. Energy, 2018, 146:57-66. [10] THIRUVENKATACHARI R, SU S, AN H,et al. Post combustion CO2 capture by carbon fibre monolithicadsorbents[J].Progress in Energy and Combustion Science,2009(35):438-455. [11] MUCHAN P, NARKU-TETTEH J, SAIWAN C, et al. Effect of number of amine groups in aqueous polyamine solution on carbon dioxide (CO2) capture activities[J]. Separation and Purification Technology, 2017, 184:128-134. [12] XIAO S N, LIU H L, GAO H X, et al. Kinetics and mechanism study of homogeneous reaction of CO2 and blends of diethanolamine and monoethanolamine using the stopped-flow technique[J]. chemical engineering journal, 2017, 316:592-600. [13] JIANG G D, HUANG Q L, KENARSARI S D. A new mesoporous amine-TiO2 based pre-combustion CO2 capture technology[J]. Appl. Energy, 2015, (147):214-223. [14] 方梦祥, 周旭萍, 王涛. 等. CO2化学吸收剂[J]. 化学进展, 2015, 27(12):1808-1814. [15] KELVIN O Y, MICHAEL O D, PATRICK T S, et al. Advances and emerging techniques for energy recovery during absorptive CO2 capture:a review of process and non-process integration-based strategies[J]. Renewable and Sustainable Energy Reviews, 2021,147, 1364-0321. [16] MAEDA K, OWADA M,KIMURA N,et al. CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae[J]. Energy Convers Manage, 1995, 36(69):717-720. [17] OH S Y, BINNS M, CHO H, et al. Energy minimization of MEA-based CO2 capture process[J]. Applied Energy, 2016, 169:353-362. [18] FYTIANOS G, UCAR S, GRIMSTVEDT A, et al. Corrosion and degradation in MEA based post-combustion CO2 capture[J]. International Journal of Greenhouse Gas Control, 2016, 46:48-56. [19] LIU J, WANG S J, ZHAO B, et al. Absorption of CO2 in aqueous ammonia[J]. Energy Procedia, 2009, 1(1):933-940. [20] KNUUTILA H, SVENDSEN H F, ANTTILA M. CO2 capture from coal-fi red power plants based on sodium carbonate slurry:a systems feasibility and sensitivity study[J]. International journal of greenhouse gas control, 2009(3):143-151. [21] WANG R J, LIU S S, LI Q W, et al. CO2 capture performance and mechanism of blended amine solvents regulated by N-methyl cyclohexyamine[J]. Energy, 2021, 215(Part B):119209. [22] IDEM R, GELOWITZ D, TONTIWACHWUTHIKUL P. Evaluation of the performance of various amine-based solvents in an optimized multipurpose technology development pilot plant[J]. Energy Procedia, 2009, 1:1543-1548. [23] YU K, CURCIC I, GABRIEL J, et al. Recent advances in CO2 capture and utilization[J]. Chem Sus Chem, 2008, 1:893-899. [24] 安山龙, 汪黎东, 于松华. 相变溶剂捕集CO2技术的研究进展[J]. 化工环保, 2017, (1):31-37. [25] BLANCHARD L A, DAN H, BECKMAN E J, et al. Green processing using ionic liquids and CO2[J]. Nature, 1999, 399(6731):28-29. [26] 樊丽华,聂阳,梁英华. 离子液体吸收CO2的研究进展[J]. 化工环保, 2010, 30(2):136-140. [27] ZHANG X, FU K, LIANG Z, et al. Experimental studies of regeneration heat duty for CO2 desorption from diethylenetriamine (DETA) solution in a stripper column packed with dixon ring random packing[J]. Fuel, 2014, 136:261-267. [28] KOTHANDARAMAN A, NORD L, BOLLAND O, et al. Comparison of solvents for post-combustion capture of CO2 by chemical absorption[J].Energy Procedia,2009(1):1373-1380. [29] 杜云贵, 辜敏, 刘涛. 捕集二氧化碳气体的复合胺及复合胺吸收剂:重庆,CN102218254A[P]. 2011-10-19. [30] 白亚开. 基于乙醇胺法与氨水法碳捕集能耗特性分析与系统优化[D]. 保定:华北电力大学, 2015:66. [31] 郭宇红. 燃煤电厂碳捕集技术及节能优化研究进展[J]. 山西电力, 2021(6):46-49. [32] KIM H, HWANG S J, LEE K S. Novel shortcut estimation method for regeneration energy of amine solvents in an absorption-based carbon capture process[J]. Environmental Science & Technology, 2015, 49(3):1478-1485. [32] YU C H, HUANG C H, TAN C S. A review of CO2 capture by absorption and desorption[J]. Aerosol and Air Quality Research, 2012, 12(5):745-769. [33] RAZA A, GHOLAMI R, REZAEE R, et al. Significant aspects of carbon capture and storage:a review[J]. Petroleum, 2019,5(4):335-340. [34] van den BROEK M, HOEFNAGELS R, RUBIN E,et al. Effects of technological learning on future cost and performance of power plants with CO2 capture[J]. Progress in Energy and Combustion Science, 2099, 35(1):457-480.
点击查看大图
计量
- 文章访问数: 213
- HTML全文浏览量: 52
- PDF下载量: 9
- 被引次数: 0