[1] |
余诚, 王凯军, 张凯渊, 等. 连续流好氧颗粒污泥技术处理低浓度市政污水的中试研究[J]. 环境工程学报, 2023, 17(3):713-721.
|
[2] |
STRUBBE L, DIJK E J H V, DEENEKAMP P J M, et al. Oxygen transfer efficiency in an aerobic granular sludge reactor:dynamics and influencing factors of alpha[J]. Chemical Engineering Journal, 2023, 452:139548.
|
[3] |
van DIJK E J H, PRONK M, van LOOSDRECHT M C M. A settling model for full-scale aerobic granular sludge[J]. Water Research, 2020, 186:116135.
|
[4] |
WEI S P, STENSEL H D, NGUYEN QUOC B, et al. Flocs in disguise? High granule abundance found in continuous-flow activated sludge treatment plants[J]. Water Research, 2020, 179:115865.
|
[5] |
丁健宁, 宫徽, 王顺煜, 等. 水力旋流分离器在水处理领域的应用研究进展[J]. 环境工程, 2021, 39(8):1-6.
|
[6] |
GONG H, DING J, WANG S, et al. Optimizing granular anammox retention via hydrocycloning during two-stage deammonification of high-solid sludge anaerobic digester supernatant[J]. Science of the Total Environment, 2021, 791:148048.
|
[7] |
GUO D, JIANG X, GUO M, et al. Role of hydrocyclone separator on the formation and separation of aerobic granular sludge:evaluating granulation efficiency and simulating hydrodynamic behavior[J]. Separation and Purification Technology, 2022, 283:120231.
|
[8] |
ROCHE C, DONNAZ S, MURTHY S, et al. Biological process architecture in continuous-flow activated sludge by gravimetry:controlling densified biomass form and function in a hybrid granule-floc process at Dijon WRRF, France[J]. Water Environment Research, 2022, 94(1):e1664.
|
[9] |
李志华, 赵敏, 贺春博, 等. 旋流选择作用及KLa对污泥颗粒化的影响研究[J]. 环境科学与技术, 2014, 37(3):37-40, 45.
|
[10] |
REGMI P, STURM B, HIRIPITIYAGE D, et al. Combining continuous flow aerobic granulation using an external selector and carbon-efficient nutrient removal with AvN control in a full-scale simultaneous nitrification-denitrification process[J]. Water Research, 2022, 210:117991.
|
[11] |
GEMZA N, JANIAK K, ZIEBA B, et al. Long-term effects of hydrocyclone operation on activated sludge morphology and full-scale secondary settling tank wet-weather operation in long sludge age WWTP[J]. Science of the Total Environment, 2022, 845:157224.
|
[12] |
WU D, ZHAO B, ZHANG P, et al. Insight into the effect of nitrate on AGS granulation:granular characteristics, microbial community and metabolomics response[J]. Water Research, 2023, 236:119949.
|
[13] |
TCHOBANOGLOUS G, BURTON F L, STENSEL H D. Wastewater Engineering:Treatment and Reuse[M]. 4th Ed, McGraw-Hill, New York, 2003.
|
[14] |
王晓东, 毕学军, 初正崑, 等. 反应温度变化对活性污泥沉降性能的影响分析[J]. 中国给水排水, 2013, 29(23):128-131.
|
[15] |
LONG B, YANG C Z, PU W H, et al. Rapid cultivation of aerobic granule for the treatment of solvent recovery raffinate in a bench scale sequencing batch reactor[J]. Separation and Purification Technology, 2016, 160:1-10.
|
[16] |
熊京忠, 来铭笙, 吉芳英, 等. 细微泥沙粒径对SBR系统污泥性质的影响[J]. 中国给水排水, 2015, 31(13):37-41.
|
[17] |
MU Y, WAN L, LIANG Z, et al. Enhanced biological phosphorus removal by high concentration powder carrier bio-fluidized bed (HPB):phosphorus distribution, cyclone separation, and metagenomics[J]. Chemosphere, 2023, 337:139353.
|
[18] |
钱玉兰, 李燕, 乔椋, 等无机絮凝剂对SBR系统中活性污泥的影响研究[J]. 中国环境科学, 2020, 40(6):2445-2453.
|
[19] |
王水兵, 高俊贤, 王燕, 等. 某污水处理厂旋流沉砂池结构改造及运行效果分析[J]. 环境工程, 2020, 38(7):116-121.
|
[20] |
ZHAO P, ZHAO S, WANG H G, et al. Encapsulation of bacteria in different stratified extracellular polymeric substances and its implications for performance enhancement and resource recovery[J]. Water Research, 2022, 220:118684.
|
[21] |
AQEEL H, WEISSBRODT D G, CERRUTI M, et al. Drivers of bioaggregation from flocs to biofilms and granular sludge[J]. Environmental Science:Water Research & Technology, 2019, 5(12):2072-2089.
|