RESEARCH PROGRESS ON INSTABILITY MECHANISMS AND IMPROVEMENT STRATEGIES OF AEROBIC GRANULAR SLUDGE
-
摘要: 好氧颗粒污泥(AGS)技术是当前具有良好发展潜力的废水生物处理强化技术之一。然而,AGS的快速培养及其在连续工艺中的长期运行稳定性仍是该技术应用所面临的主要挑战。通过文献分析,从物理、化学和微生物等方面分析了AGS失稳的主要原因和潜在机理,论述了颗粒污泥稳定性的主要增强策略,即选择性污泥排放、优化颗粒粒径、强化EPS分泌、控制菌群生长速率、抑制丝状菌的过度增殖、外源强化以及外加信号分子。鉴于AGS失稳机理的复杂性和单一改善策略的局限性,AGS结构的长期稳定维持需要采用多种策略进行综合管理,且未来对于AGS适居带(goldilocks zone)的研究应更加注重从物理、化学和微生物学等角度进行系统考虑。Abstract: Aerobic granular sludge (AGS) technology is currently one of the promising enhanced technologies for biological wastewater treatment. However, the rapid cultivation of AGS and its long-term operational stability, especially in continuous processes, remain the main challenges faced by the application of this technology. Through literature analysis, this paper analyzes the main causes and potential mechanisms of AGS instability from the physical, chemical, and microbial aspects, and discusses the main strategies for enhancing the stability of granular sludge, namely, selective sludge discharge, particle size optimization, EPS secretion enhancement, bacterial growth rate control, excessive proliferation inhibition of filamentous bacteria, exogenous enhancement and addition of signaling molecule. In view of the complexity of the instability mechanism of AGS and the limitations of a single improvement strategy, the long-term stability of AGS structure needs to be comprehensively managed by a variety of strategies, and future research on AGS goldilocks zone should pay more attention to systematic consideration from the physical, chemical, and microbiological perspectives.
-
[1] MASZENAN A M, LIU Y, NG W J. Bioremediation of wastewaters with recalcitrant organic compounds and metals by aerobic granules[J]. Biotechnology Advances, 2011, 29(1):111-123. [2] CHEN Y, JIANG W, LIANG D T, et al. Structure and stability of aerobic granules cultivated under different shear force in sequencing batch reactors[J]. Applied Microbiology and Biotechnology, 2007, 76(5):1199-1208. [3] BEUN J J, HENDRIKS A, LOOSDRECHT M C M, et al. Aerobic granulation in a sequencing batch reactor[J]. Water Research, 1999, 33(10):2283-2290. [4] SARMA S J, TAY J H. Aerobic granulation for future wastewater treatment technology:challenges ahead[J]. Environmental Science:Water Research & Technology, 2018, 4(1):9-15. [5] 付香云, 余诚, 王凯军, 等. 连续流培养好氧颗粒污泥研究进展[J]. 中国环境科学, 2022, 42(4):1726-1736. [6] BENGTSSON S, DE-BLOIS M, WILEN B M, et al. A comparison of aerobic granular sludge with conventional and compact biological treatment technologies[J]. Environmental technology, 2019, 40(21):2769-2778. [7] LONG B, YANG C Z, PU W H, et al. Tolerance to organic loading rate by aerobic granular sludge in a cyclic aerobic granular reactor[J]. Bioresource Technology, 2015, 182:314-322. [8] FAROOQI I H, BASHEER F. Treatment of Adsorbable Organic Halide (AOX) from pulp and paper industry wastewater using aerobic granules in pilot scale SBR[J]. Journal of Water Process Engineering, 2017, 19:60-66. [9] ZHANG H M, DONG F, JIANG T, et al. Aerobic granulation with low strength wastewater at low aeration rate in A/O/A SBR reactor[J]. Enzyme and Microbial Technology, 2011, 49(2):215-222. [10] WANG J, WANG X, ZHAO Z, et al. Organics and nitrogen removal and sludge stability in aerobic granular sludge membrane bioreactor[J]. Applied Microbiology and Biotechnology, 2008, 79(4):679-685. [11] LEMAIRE R, WEBB R I, YUAN Z G. Micro-scale observations of the structure of aerobic microbial granules used for the treatment of nutrient-rich industrial wastewater[J]. The ISME Journal, 2008, 2(5):528-541. [12] ZHENG Y M, YU H Q. Determination of the pore size distribution and porosity of aerobic granules using size-exclusion chromatography[J]. Water Research, 2007, 41(1):39-46. [13] FILALI A, MANAS A, MERCADE M, et al. Stability and performance of two GSBR operated in alternating anoxic/aerobic or anaerobic/aerobic conditions for nutrient removal[J]. Biochemical Engineering Journal, 2012, 67:10-19. [14] ZHENG Y M, YU H Q, LIU S J, et al. Formation and instability of aerobic granules under high organic loading conditions[J]. Chemosphere, 2006, 63(10):1791-1800. [15] 宋志伟, 徐雪冬, 张晴. 碳氮比对好氧颗粒污泥稳定性的影响[J]. 环境工程学报, 2020, 14(1):262-269. [16] ZHU L, YU Y, XU X, et al. High-rate biodegradation and metabolic pathways of 4-chloroaniline by aerobic granules[J]. Process Biochemistry, 2011, 46(4):894-899. [17] LUO J, HAO T, WEI L, et al. Impact of influent COD/N ratio on disintegration of aerobic granular sludge[J]. Water Research, 2014, 62:127-135. [18] ADAV S S, LEE D J, LAI J Y. Potential cause of aerobic granular sludge breakdown at high organic loading rates[J]. Applied Microbiology and Biotechnology, 2010, 85(5):1601-1610. [19] ZHU L, LV M L, DAI X, et al. Role and significance of extracellular polymeric substances on the property of aerobic granule[J]. Bioresource Technology, 2012, 107:46-54. [20] YANG S F, TAY J H, LIU Y. Inhibition of free ammonia to the formation of aerobic granules[J]. Biochemical Engineering Journal, 2004, 17(1):41-48. [21] WANG Z W, LI Y, ZHOU J Q, et al. The influence of short-term starvation on aerobic granules[J]. Process Biochemistry, 2006, 41(12):2373-2378. [22] CORSINO S F, CAMPO R, DI-BELLA G, et al. Study of aerobic granular sludge stability in a continuous-flow membrane bioreactor[J]. Bioresource Technology, 2016, 200:1055-1059. [23] WAN C L, ZHANG P, LEE D J, et al. Disintegration of aerobic granules:role of second messenger cyclic di-GMP[J]. Bioresource Technology, 2013, 146:330-335. [24] JIANG B, LIU Y. Dependence of structure stability and integrity of aerobic granules on ATP and cell communication[J]. Applied Microbiology and Biotechnology, 2013, 97(11):5105-5112. [25] LV J, WANG Y, ZHONG C, et al. The effect of quorum sensing and extracellular proteins on the microbial attachment of aerobic granular activated sludge[J]. Bioresource Technology, 2014, 152:53-58. [26] LI Y C, ZHU J R. Role of N-acyl homoserine lactone (AHL)-based quorum sensing (QS) in aerobic sludge granulation[J]. Applied Microbiology and Biotechnology, 2014, 98(17):7623-7632. [27] SHENG G P, LI A J, LI X Y, et al. Effects of seed sludge properties and selective biomass discharge on aerobic sludge granulation[J]. Chemical Engineering Journal, 2010, 160(1):108-114. [28] ZHU L, YU Y, DAI X, et al. Optimization of selective sludge discharge mode for enhancing the stability of aerobic granular sludge process[J]. Chemical Engineering Journal, 2013, 217:442-446. [29] ZHANG C, ZHANG H, YANG F. Diameter control and stability maintenance of aerobic granular sludge in an A/O/A SBR[J]. Separation and Purification Technology, 2015, 149:362-369. [30] ZHOU J H, ZHANG Z M, ZHAO H, et al. Optimizing granules size distribution for aerobic granular sludge stability:effect of a novel funnel-shaped internals on hydraulic shear stress[J]. Bioresource Technology, 2016, 216:562-570. [31] FENG H, YANG H, SHENG J, et al. A bioreactor designed for restricting oversize of aerobic granular sludge[J]. Processes, 2021, 9(2):374. [32] LONG B, XUAN X, YANG C, et al. Stability of aerobic granular sludge in a pilot scale sequencing batch reactor enhanced by granular particle size control[J]. Chemosphere, 2019, 225:460-469. [33] HUANG W, WANG W, SHI W, et al. Use low direct current electric field to augment nitrification and structural stability of aerobic granular sludge when treating low COD/NH4-N wastewater[J]. Bioresource Technology, 2014, 171:139-144. [34] SUN H, CHEN S, LIU J, et al. Role of layered double hydroxide in improving the stability of aerobic granular sludge[J]. CLEAN-Soil, Air, Water, 2017, 45(4):1500943. [35] IORHEMEN O T, ZAGHLOUL M S, HAMZA R A, et al. Long-term aerobic granular sludge stability through anaerobic slow feeding, fixed feast-famine period ratio, and fixed SRT[J]. Journal of Environmental Chemical Engineering, 2020, 8(2):103681. [36] TAY J H, LIU Q S, LIU Y. The effect of upflow air velocity on the structure of aerobic granules cultivated in a sequencing batch reactor[J]. Water Science and Technology, 2004, 49(11/12):35-40. [37] LIU Y, YANG S F, TAY J H. Improved stability of aerobic granules by selecting slow-growing nitrifying bacteria[J]. Journal of Biotechnology, 2004, 108(2):161-169. [38] XIA L P, ZHANG H M, WANG X H. An effective way to select slow-growing nitrifying bacteria by providing a dynamic environment[J]. Bioprocess and Biosystems Engineering, 2007, 30(6):383-388. [39] YUAN Q, GONG H, XI H, et al. Strategies to improve aerobic granular sludge stability and nitrogen removal based on feeding mode and substrate[J]. Journal of Environmental Sciences, 2019, 84:144-154. [40] MCSWAIN B S, IRVINE R L, WILDERER P A. The effect of intermittent feeding on aerobic granule structure[J]. Water Science and Technology, 2004, 49(11):19-25. [41] FAN N, WANG R, QI R, et al. Control strategy for filamentous sludge bulking:bench-scale test and full-scale application[J]. Chemosphere, 2018, 210:709-716. [42] GENG M, YOU S, GUO H, et al. Impact of fungal pellets dosage on long-term stability of aerobic granular sludge[J]. Bioresource Technology, 2021, 332:125106. [43] 彭咏雪. 自聚集菌株Pseudomonas stutzeri strain XL-2促进好氧颗粒污泥形成的机制研究[D]. 重庆:重庆大学, 2020. [44] ZHAO Z, LIU S, YANG X, et al. Stability and performance of algal-bacterial granular sludge in shaking photo-sequencing batch reactors with special focus on phosphorus accumulation[J]. Bioresour Technol, 2019, 280:497-501. [45] WANG G, WANG D, XU X, et al. Partial nitrifying granule stimulated by struvite carrier in treating pharmaceutical wastewater[J]. Applied Microbiology and Biotechnology, 2013, 97(19):8757-8765. [46] LIANG X Y, GAO B Y, NI S Q. Effects of magnetic nanoparticles on aerobic granulation process[J]. Bioresource Technology, 2017, 227:44-49. [47] YILMAZ G, BOZKURT U, MAGDEN K A. Effect of iron ions (Fe2+, Fe3+) on the formation and structure of aerobic granular sludge[J]. Biodegradation, 2017, 28(1):53-68. [48] WEI Y J, JI M, LI G Y. Enhancement of stability of aerobic granules by powdered activated carbon addition[J]. Journal of Tianjin University, 2012, 45:247-253. [49] 宋志伟, 邓文静, 郑欢,等.外源AHLs信号分子对好氧颗粒污泥稳定性的影响[J]. 黑龙江科技大学学报, 2021, 31(3):354-359. [50] SUN S, LIU X, MA B, et al. The role of autoinducer-2 in aerobic granulation using alternating feed loadings strategy[J]. Bioresource Technology, 2016, 201:58-64. [51] SARMA S J, TAY J H, CHU A. Finding Knowledge Gaps in Aerobic Granulation Technology[J]. Trends Biotechnol, 2017, 35(1):66-78. [52] 王陆玺, 周楠, 王晨旭. 流体流速对好氧颗粒污泥快速培养的影响[J]. 中国环境科学, 2018, 38(6):2090-2096. [53] HAMZA R, RABII A, EZZAHRAOUI F Z, et al. A review of the state of development of aerobic granular sludge technology over the last 20 years:full-scale applications and resource recovery[J]. Case Studies in Chemical and Environmental Engineering, 2022, 5:100173. [54] TAY J H, LIU Q S, LIU Y. The effects of shear force on the formation, structure and metabolism of aerobic granules[J]. Applied Microbiology and Biotechnology, 2001, 57(1/2):227-233. [55] LIU Y, TAY J H. State of the art of biogranulation technology for wastewater treatment[J]. Biotechnology Advances, 2004, 22(7):533-563. [56] VERAWATY M, TAIT S, PIJUAN M, et al. Breakage and growth towards a stable aerobic granule size during the treatment of wastewater[J]. Water Research, 2013, 47(14):5338-5349. [57] CAO R, JI Y, HAN T, et al. The stability of aerobic granular sludge under low energy consumption:optimization of the granular size distribution by a novel internal component[J]. Environmental Science:Water Research & Technology, 2021, 7(6):1125-1136. [58] STEWART T L, FOGLER H S. Biomass plug development and propagation in porous media[J]. Biotechnology and Bioengineering, 2001, 72(3):353-363. [59] 陈颖,陈垚,李聪,等.好氧颗粒污泥结构特点及稳定性研究进展[J].工业水处理,2021,41(10):28-35. [60] LEE D J, CHEN Y Y, SHOW K Y, et al. Advances in aerobic granule formation and granule stability in the course of storage and reactor operation[J]. Biotechnology Advances, 2010, 28(6):919-934. [61] MOY B Y, TAY J H, TOH S K, et al. High organic loading influences the physical characteristics of aerobic sludge granules[J]. Letters in Applied Microbiology, 2002, 34(6):407-412. [62] SCHWARZENBECK N, BORGES J M, WILDERER P A. Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor[J]. Applied Microbiology and Biotechnology, 2005, 66(6):711-718. [63] LIU Y, LIU Q S. Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors[J]. Biotechnology Advances, 2006, 24(1):115-127. [64] MOSQUERA-CORRAL A, DE-KREUK M K, HEIJNEN J J, et al. Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor[J]. Water Research, 2005, 39(12):2676-2686. [65] DE SOUSA ROLLEMBERG S L, BARROS A R M, FIRMINO P I M, et al. Aerobic granular sludge-Cultivation parameters and removal mechanisms[J]. Bioresource Technology, 2018, 270:678-688. [66] NANCHARAIAH Y V, REDDY G K K. Aerobic granular sludge technology:mechanisms of granulation and biotechnological applications[J]. Bioresource Technology, 2018, 247:1128-1143. [67] 杨珊珊,赵丰年,金锡标,等. 降低负荷以提高反硝化颗粒污泥的稳定性[J]. 环境工程学报, 2009, 3(8):1379-1382. [68] ZOU J, YU F, PAN J, et al. Rapid start-up of an aerobic granular sludge system for nitrogen and phosphorus removal through seeding chitosan-based sludge aggregates[J]. Science of the Total Environment, 2021, 762:144171. [69] SHEN Y, HUANG D M, CHEN Y P, et al. New insight into filamentous sludge bulking during wastewater treatment:surface characteristics and thermodynamics[J]. Science of the Total Environment, 2020, 712:135795. [70] BASUVARAJ M, FEIN J, LISS S N. Protein and polysaccharide content of tightly and loosely bound extracellular polymeric substances and the development of a granular activated sludge floc[J]. Water Research, 2015, 82:104-117. [71] LIU Y Q, LIU Y, TAY J H. The effects of extracellular polymeric substances on the formation and stability of biogranules[J]. Applied Microbiology and Biotechnology, 2004, 65(2):143-148. [72] ZHAO Z, LIU S, YANG X, et al. Stability and performance of algal-bacterial granular sludge in shaking photo-sequencing batch reactors with special focus on phosphorus accumulation[J]. Bioresource Technology, 2019, 280:497-501. [73] TAY J H, LIU Q S, LIU Y. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor[J]. Journal of Applied Microbiology, 2001, 91(1):168-175. [74] MCSWAIN B S, IRVINE R L, HAUSNER M, et al. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge[J]. Applied and Environmental Microbiology, 2005, 71(2):1051-1057. [75] PENG T, WANG Y, WANG J, et al. Effect of different forms and components of EPS on sludge aggregation during granulation process of aerobic granular sludge[J]. Chemosphere, 2022, 303(2):135116. [76] IORHEMEN O T, HAMZA R A, ZAGHLOUL M S, et al. Aerobic granular sludge membrane bioreactor (AGMBR):extracellular polymeric substances (EPS) analysis[J]. Water Research, 2019, 156:305-314. [77] HOU X, LIU S, ZHANG Z. Role of extracellular polymeric substance in determining the high aggregation ability of anammox sludge[J]. Water Research, 2015, 75:51-62. [78] FRANCA R D G, PINHEIRO H M, VAN LOOSDRECHT M C M, et al. Stability of aerobic granules during long-term bioreactor operation[J]. Biotechnology Advances, 2018, 36(1):228-246. [79] XIONG Y H, LIU Y. Importance of extracellular proteins in maintaining structural integrity of aerobic granules[J]. Colloids and Surfaces B-Biointerfaces, 2013, 112:435-440. [80] DING Y, FENG H, ZHAO Z, et al. The Effect of Quorum Sensing on Mature Anaerobic Granular Sludge in Unbalanced Nitrogen Supply[J]. Water, Air, & Soil Pollution, 2016, 227(9):1-11. [81] HUANG J, YI K, ZENG G, et al. The role of quorum sensing in granular sludge:impact and future application:a review[J]. Chemosphere, 2019, 236:124310. [82] JIANG B, LIU Y. Roles of ATP-dependent N-acylhomoserine lactones (AHLs) and extracellular polymeric substances (EPSs) in aerobic granulation[J]. Chemosphere, 2012, 88(9):1058-1064. [83] MCSWAIN B S, IRVINE R L, WILDERER P A. The influence of settling time on the formation of aerobic granules[J]. Water Science and Technology, 2004, 50:195-202. [84] CHEN R, SHUAI J, XIE Y, et al. Aerobic granulation and microbial community succession in sequencing batch reactors treating the low strength wastewater:the dual effects of weak magnetic field and exogenous signal molecule[J]. Chemosphere, 2022, 309(1):136762. [85] ZHENG X, HAN Z, SHAO X, et al. Response of aerobic granular sludge under polyethylene microplastics stress:physicochemical properties, decontamination performance, and microbial community[J]. Journal of Environmental Management, 2022, 323:116215. [86] LIU Y Q, TAY J H. Influence of starvation time on formation and stability of aerobic granules in sequencing batch reactors[J]. Bioresource Technology, 2008, 99(5):980-985. [87] 郭之晗,徐云翔,李天皓,等. 好氧颗粒污泥长期稳定运行研究进展[J]. 化工进展, 2022, 41(5):2686-2697. [88] 王义富.右旋氨基酸对废水处理反应器中微生物聚集体的作用机制[D]. 济南:山东大学, 2014. [89] KOHARA A K K. Amino acid sensing using an ion-sensitive fieldeffect transistor[J]. Chemistry and Chemical Industry, 2012,6(5):397-400. [90] 支丽玲,马鑫欣,刘奇欣,等.好氧颗粒污泥形成过程中群感效应的作用研究[J].中国环境科学,2020,40(5):2148-2156. [91] 刘前进, 刘立凡. 胞外聚合物中蛋白质对好氧污泥颗粒化的影响[J]. 环境工程学报, 2021, 15(3):929-938. [92] QIN L, LIU Y, TAY J H. Effect of settling time on aerobic granulation in sequencing batch reactor[J]. Biochemical Engineering Journal, 2004, 21(1):47-52. [93] ZHANG Z, YU Z, DONG J, et al. Stability of aerobic granular sludge under condition of low influent C/N ratio:correlation of sludge property and functional microorganism[J]. Bioresource Technology, 2018, 270:391-399. [94] ZHANG Z M, QIU J X, XIANG R H, et al. Organic loading rate (OLR) regulation for enhancement of aerobic sludge granulation:role of key microorganism and their function[J]. Science of the Total Environment, 2019, 653:630-637. [95] PEYONG Y N, ZHOU Y, ABDULLAH A Z, et al. The effect of organic loading rates and nitrogenous compounds on the aerobic granules developed using low strength wastewater[J]. Biochemical Engineering Journal, 2012, 67:52-59. [96] SONG T, ZHANG X, LI J. Aerobic granular sludge with filamentous bacteria immobilized by string carriers to treat simulated municipal wastewater in a continuous flow reactor[J]. Bioresource Technology, 2022, 363:127917. [97] 刘怡,张冰,时文歆,等.菌-藻共生好氧颗粒污泥的稳定性机理[J].中国环境科学,2022,42(4):1696-1705. [98] LIU L, ZENG Z, BEE M, et al. Characteristics and performance of aerobic algae-bacteria granular consortia in a photo-sequencing batch reactor[J]. Journal of Hazardous Materials, 2018, 349:135-142. [99] LIU L, FAN H, LIU Y, et al. Development of algae-bacteria granular consortia in photo-sequencing batch reactor[J]. Bioresource Technology, 2017, 232:64-71. [100] AHMAD J S M, CAI W, ZHAO Z, et al. Stability of algal-bacterial granules in continuous-flow reactors to treat varying strength domestic wastewater[J]. Bioresource Technology, 2017, 244(1):225-233. [101] DE S P, CRAB R, DEFOIRDT T, et al. The basics of bio-flocs technology:the added value for aquaculture[J]. Aquaculture, 2008, 277(3/4):125-137. [102] GONÇALVES A L, PIRES J C M, SIMÕES M. A review on the use of microalgal consortia for wastewater treatment[J]. Algal Research, 2017, 24:403-415. [103] 李玉琪, 赵白航, 张雨晴, 等. 纳米氧化铜颗粒和环丙沙星对好氧颗粒污泥的协同胁迫效应[J]. 中国环境科学, 43(1):61-69. [104] HAMZA R A, ZAGHLOUL M S, IORHEMEN O T, et al. Optimization of organics to nutrients (COD:N:P) ratio for aerobic granular sludge treating high-strength organic wastewater[J]. Science of the Total Environment, 2019, 650(2):3168-3179. [105] FOZARD J A, LEES M, KING J R, et al. Inhibition of quorum sensing in a computational biofilm simulation[J]. Biosystems, 2012, 109(2):105-114. [106] 郑婧婧, 张智明, 徐向阳, 等. 污水处理好氧颗粒污泥生产运行中的结构与稳定性[J]. 应用与环境生物学报, 2021, 27(6):1672-1685. [107] LI C, LI W, LI H, et al. The effect of quorum sensing on performance of salt-tolerance aerobic granular sludge:linking extracellular polymeric substances and microbial community[J]. Biodegradation, 2019, 30(5/6):447-456.
点击查看大图
计量
- 文章访问数: 149
- HTML全文浏览量: 25
- PDF下载量: 4
- 被引次数: 0