A MODEL OF CARBON EMISSION REDUCTION CALCULATION FOR AEROBIC REMEDIATION PROCESS IN MSW LANDFILLS BASED ON PRINCIPAL COMPONENT ANALYSIS
-
摘要: 老生活垃圾填埋场好氧修复技术因其对甲烷气体的削减,已逐渐在我国得到广泛应用,有望成为"双碳"目标背景下我国填埋场修复的重要技术手段。目前国内外常用的填埋场碳排放核算模型难以表征填埋场好氧修复过程的碳减排。以天津华明简易填埋场好氧修复项目作为研究对象,分析了其自2019年5月开始好氧修复工作300 d内的堆体工程力学特性、垃圾降解生化特性以及垃圾渗沥液生化特性等特征指标,得出2个特征指标主成分,并利用主成分建立堆体甲烷浓度回归模型。该模型可以分析和预测填埋场好氧修复过程中堆体内部甲烷气体浓度递减规律,进而可计算填埋场好氧修复相较于传统厌氧封场的甲烷削减量,为填埋场好氧修复碳减排核算提供理论依据,也可成为填埋场堆体稳定化状态的特征值甲烷浓度的判定参考。Abstract: Aerobic remediation technology for old MSW landfills has been widely used in China due to its reduction performance on methane gas, and is expected as an important technical means of landfill remediation under the background of China's Dual Carbon Goals. The carbon emission accounting models commonly used at home and abroad are difficult to represent the carbon emission reduction of landfill aerobic remediation process. In this paper, the aerobic restoration project of Tianjin Huaming landfill was taken as the research object, and the engineering mechanical properties of the landfill, biochemical properties of waste degradation, and biochemical properties of landfill leachate were analyzed within 300 days of aerobic restoration work since May 2019. Two principal components were obtained, and a regression model of methane concentration in the landfill was established using the principal components analysis. This model can analyze and predict the decreasing law of methane gas concentration in landfill bodies during aerobic restoration, and then calculate the methane reduction of landfill aerobic restoration compared with the traditional anaerobic sealing field. It provides a theoretical basis for the calculation of carbon emission reduction of landfill aerobic restoration, and can be applied to judge aerobic restoration process when landfill showes the characteristic value of methane concentration stabilization.
-
[1] 曹丽,陈娜,胡朝辉,等.垃圾填埋场:世界最大的生态修复案例:以武汉市金口垃圾填埋场为例[J].城市管理与科技,2016,18(3):24-27. [2] 王浩文,邵靖邦,徐涛.垃圾填埋场好氧生态修复技术与堆体渗滤液水位的特征研究[J].科学技术创新,2021(19):23-25. [3] 李蕾,彭垚,谭涵月,等.填埋场原位好氧稳定化技术的应用现状及研究进展[J].中国环境科学,2021,41(6):2725-2736. [4] JEONG Sangjae, NAM Anwoo, YI Seung-Muk, et al. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines,Waste Management,Volume 36,2015:197-203. [5] 贾明升,王晓君,陈少华.垃圾填埋场N2O排放通量及测定方法研究进展[J].应用生态学报,2014,25(6):1815-1824. [6] 2006 IPCC Guidelines for National Greenhouse Gas Inventories[M]. Hayami, Japan:Institute for Global Environmental Strategies,2006. [7] MÓNICA DELGADO, ANA LÓPEZ, ANA LORENA ESTEBAN-GARCÍA,et al. The importance of particularising the model to estimate landfill GHG emissions[J]. Journal of Environmental Management,Part B,2023,325:116600. [8] 肖电坤. 垃圾填埋场好氧降解稳定化模型及其应用[D].杭州:浙江大学,2022. [9] 李鹤. 高厨余垃圾填埋场降解固结性状及液气诱发灾害治理方法[D].杭州:浙江大学,2021. [10] SCHEUTZ C, KJELD A, FREDENSLUND A M. Methane emissions from Icelandic landfills:a comparison between measured and modelled emissions[J].Waste Management, 2022,139:136-145. [11] 厉江锋,陈朱蕾,胡朝辉,等.好氧修复条件下填埋场沉降模型研究[J].环境卫生工程,2017,25(1):12-16. [12] 周永希. 垃圾填埋场CH4和N2O释放规律及减排方法的基础研究[D].南昌:华东交通大学,2017. [13] 吴昊. 序批式生物反应器填埋场N2O产生规律及影响因素初步研究[D].青岛:青岛理工大学,2012. [14] 王秀文,赵静,董承健,等.木材类Klason法木质素的结构表征及其热解特性[J].东南大学学报(自然科学版),2014,44(4):782-786. [15] IANNOTTI D A, PANG T, TOTH B L, et al.A Quantitative Respirometric Method for Monitoring Compost Stability[J]. Compost Science & Utilization,1993,1(3):52-65. [16] 张均龙. 老垃圾填埋场好氧修复试验及数值模拟[D]. 武汉:华中科技大学, 2019. [17] 李睿. 填埋垃圾原位好氧加速稳定化技术研究[D].北京:清华大学,2013. [18] 唐嵘.封场非正规垃圾填埋场好氧降解快速稳定技术及应用研究[D].北京:中国地质大学(北京),2012. [19] HEYER K U,HUPE K,RITZKOWSKI M,et al.Pollutant release and pollutant reduction-impact of the aeration of landfills[J].Waste Management,2005,25(4):353-359. [20] 戴小松,邵靖邦,叶亦盛,等.垃圾填埋场好氧生态修复技术在武汉金口垃圾填埋场治理工程中的应用[J].施工技术,2016,45(增刊2):699-703. [21] 肖电坤,陈云敏,徐文杰,等.城市固废好氧加速稳定及碳氮迁移试验研究[J].中国环境科学,2022,42(5):2204-2212. [22] 王琛,孙治国,付友先,等.填埋场产甲烷影响因素及减排技术研究进展[J].山东化工,2022,51(16):104-106,110. [23] 蔡伽怡,席爽,王思淇,等.填埋场好氧修复过程中细菌群落结构和功能的变化趋势研究[J].环境卫生工程,2022,30(3):70-76. [24] ROSA-LAURA M, ANA-MARÍA V, ARMANDO D.A fractal-like kinetics equation to calculate landfill methane production[J]. Fuel, 2004,83(1):73-80. [25] HEYER K U,HUPE K,RITZKOWSKI M,et al.Pollutant release and pollutant reduction-impact of the aeration of landfills[J].Waste Management,2005,25(4):353-359. [26] 刘娟. 垃圾填埋场稳定化进程核心表征指标研究[D].北京:清华大学,2011. [27] CANO R, NIELFA A, FDZ-POLANCO M. Thermal hydrolysis integration in the anaerobic digestion process of different solid wastes:energy and economic feasibility study[J]. Bioresource Technology,2014,168:14-22. [28] 汪佳,周新全,蔡伽怡,等.老填埋场原位好氧稳定化技术液体循环系统工艺设计参数研究[J].环境卫生工程,2021,29(2):82-87. [29] 付晓杰,王振,张歌.基于主成分分析法的广利河水质时空演变研究[J].给水排水,2022,58(增刊1):812-814. [30] 梁恒德. 渭河上游的水环境承载力研究[D].兰州:兰州大学,2022. [31] ANA-BELÉN COLAZO, ANTONI SÁNCHEZ, XAVIER FONT, et al. Environmental impact of rejected materials generated in the organic fraction of municipal solid waste anaerobic digestion plants:comparison of wet and dry process layout[J]. Waste Management, 2015, 43:84-97.
点击查看大图
计量
- 文章访问数: 114
- HTML全文浏览量: 15
- PDF下载量: 4
- 被引次数: 0