中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

厌氧消化过程氨抑制的生物学机理

刘超 张学萌 陈闯 殷玥 黄海宁 陈银广

芦三强, 魏佳芳. 跌流竖井进水管附近负压突增现象的机理解析及结构优化[J]. 环境工程, 2024, 42(2): 97-103. doi: 10.13205/j.hjgc.202402011
引用本文: 刘超, 张学萌, 陈闯, 殷玥, 黄海宁, 陈银广. 厌氧消化过程氨抑制的生物学机理[J]. 环境工程, 2023, 41(9): 156-165. doi: 10.13205/j.hjgc.202309019
LU Sanqiang, WEI Jiafang. MECHANISM ANALYSIS AND STRUCTURAL OPTIMIZATION OF SUDDEN INCREASE OF NEGATIVE PRESSURE NEAR WATER INLET PIPE OF A DROPSHAFT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 97-103. doi: 10.13205/j.hjgc.202402011
Citation: LIU Chao, ZHANG Xuemeng, CHEN Chuang, YIN Yue, HUANG Haining, CHEN Yinguang. BIOLOGICAL MECHANISM OF AMMONIA INHIBITION DURING ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 156-165. doi: 10.13205/j.hjgc.202309019

厌氧消化过程氨抑制的生物学机理

doi: 10.13205/j.hjgc.202309019
基金项目: 

国家重点研发计划项目(2019YFC1906301);上海市科委扬帆计划项目(23YF1448900)

详细信息
    作者简介:

    刘超(1995-),男,博士后,主要研究方向为有机废物生物处理与资源化。chaoliu@tongji.edu.cn

    通讯作者:

    陈银广(1969-),男,教授,主要研究方向为污染控制与资源化。yinchentj@163.com

BIOLOGICAL MECHANISM OF AMMONIA INHIBITION DURING ANAEROBIC DIGESTION

  • 摘要: 厌氧消化作为有机废物无害化处理与能源物质回收的一种有效手段,在实际工程中得以广泛应用。然而厌氧消化过程中产生的高浓度氨氮严重抑制了底物降解和沼气生产,被认为是导致系统性能下降甚至反应体系崩溃的重要因素。厌氧消化的本质是水解酸化菌、产氢产乙酸菌和产甲烷菌等多种微生物利用有机物生产甲烷的过程,故从微生物的角度解析氨抑制机制有助于从源头查明失稳原因,但少有文献对厌氧消化氨抑制的生物学机理进行系统阐述。基于此,首先归纳总结了氨胁迫下微生物菌群结构重塑特征,再着重阐述了高氨氮对细胞关键表型的影响,最后分别探讨了氨抑制下酶和脂质的演变规律,以拓展对厌氧消化氨抑制行为的理解,并提出了氨胁迫下微生物间相互作用和基于氨抑制机理的解抑方法等面向未来的研究方向。
  • [1] CALDERON A G, DUAN H, MENG J, et al. An integrated strategy to enhance performance of anaerobic digestion of waste activated sludge[J]. Water Research, 2021, 195:116977.
    [2] SHI Z, CAMPANARO S, USMAN M, et al. Genome-centric metatranscriptomics analysis reveals the role of hydrochar in anaerobic digestion of waste activated sludge[J]. Environmental Science & Technology, 2021, 55(12):8351-8361.
    [3] LI Y, CHEN Z, PENG Y, et al. Deeper insights into the effects of substrate to inoculum ratio selection on the relationship of kinetic parameters, microbial communities, and key metabolic pathways during the anaerobic digestion of food waste[J]. Water Reserach, 2022, 217:118440.
    [4] 赵刚, 唐建国, 徐竟成, 等. 中美典型污泥处理处置工程能耗和碳排放比较分析[J]. 环境工程, 2022, 40(12):9-16.
    [5] RAJAGOPAL R, MASSÉ D I, SINGH G. A critical review on inhibition of anaerobic digestion process by excess ammonia[J]. Bioresource Technology, 2013, 143:632-641.
    [6] JIANG Y, MCADAM E, ZHANG Y, et al. Ammonia inhibition and toxicity in anaerobic digestion:a critical review[J]. Journal of Water Process Engineering, 2019, 32:100899.
    [7] WANG Z, JIANG Y, WANG S, et al. Impact of total solids content on anaerobic co-digestion of pig manure and food waste:insights into shifting of the methanogenic pathway[J]. Waste Management, 2020, 114:96-106.
    [8] 何仕均, 王建龙, 赵璇. 氨氮对厌氧颗粒污泥产甲烷活性的影响[J]. 清华大学学报(自然科学版), 2005, 9(45):1294-1296.
    [9] LIU C, HUANG H, DUAN X, et al. Integrated metagenomic and metaproteomic analyses unravel ammonia toxicity to active methanogens and syntrophs, enzyme synthesis, and key enzymes in anaerobic digestion[J]. Environmental Science & Technology, 2021, 55(21):14817-14827.
    [10] ZHANG H, YUAN W, DONG Q, et al. Integrated multi-omics analyses reveal the key microbial phylotypes affecting anaerobic digestion performance under ammonia stress[J]. Water Research, 2022, 213:118152.
    [11] LIU Y, NGO H H, GUO W, et al. The roles of free ammonia (FA) in biological wastewater treatment processes:a review[J]. Environment International, 2019, 123:10-19.
    [12] SAHA S, BASAK B, HWANG J H, et al. Microbial symbiosis:a network towards biomethanation[J]. Trends in Microbiology, 2020, 28(12):968-984.
    [13] CARBALLA M, REGUEIRO L, LEMA J M. Microbial management of anaerobic digestion:exploiting the microbiome-functionality nexus[J]. Current Opinion in Biotechnology, 2015, 33:103-111.
    [14] SIEBER J R, MCINERNEY M J, GUNSALUS R P. Genomic insights into syntrophy:the paradigm for anaerobic metabolic cooperation[J]. Annual Review of Microbiology, 2012, 66:429-452.
    [15] SPROTT G D, PATEL G B. Ammonia toxicity in pure cultures of methanogenic bacteria[J]. Systematic and Applied Microbiology, 1986, 7(2/3):358-363.
    [16] FOTIDIS I A, KARAKASHEV D, ANGELIDAKI I. The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels[J]. International Journal of Environmental Science and Technology, 2013, 11(7):2087-2094.
    [17] WANG Z, WANG S, HU Y, et al. Distinguishing responses of acetoclastic and hydrogenotrophic methanogens to ammonia stress in mesophilic mixed cultures[J]. Water Research, 2022, 224:119029.
    [18] LV Z, LEITE A F, HARMS H, et al. Microbial community shifts in biogas reactors upon complete or partial ammonia inhibition[J]. Applied Microbiology and Biotechnology, 2019, 103(1):519-533.
    [19] RUIZ-SANCHEZ J, CAMPANARO S, GUIVERNAU M, et al. Effect of ammonia on the active microbiome and metagenome from stable full-cale digesters[J]. Bioresource Technology, 2018, 250:513-522.
    [20] CHEN H, WANG W, XUE L, et al. Effects of ammonia on anaerobic digestion of food waste:process performance and microbial community[J]. Energy & Fuels, 2016, 30(7):5749-5757.
    [21] CHRISTOU M L, VASILEIADIS S, KALAMARAS S D, et al. Ammonia-induced inhibition of manure-based continuous biomethanation process under different organic loading rates and associated microbial community dynamics[J]. Bioresource Technology, 2021, 320:124323.
    [22] HE L, YU J, LIN Z, et al. Organic matter removal performance, pathway and microbial community succession during the construction of high-ammonia anaerobic biosystems treating anaerobic digestate food waste effluent[J]. Journal of Environmental Management, 2022, 317:115428.
    [23] 彭韵, 李蕾, 伍迪, 等. 微生物群落对氨胁迫响应的宏基因组学研究[J]. 中国环境科学, 2022, 42(2):777-786.
    [24] CALLI B, MERTOGLU B, INANC B, et al. Effects of high free ammonia concentrations on the performances of anaerobic bioreactors[J]. Process Biochemistry, 2005, 40(3/4):1285-1292.
    [25] ZHANG C, YUAN Q, LU Y. Inhibitory effects of ammonia on syntrophic propionate oxidation in anaerobic digester sludge[J]. Water Research, 2018, 146:275-287.
    [26] PENG X, ZHANG S, LI L, et al. Long-term high-solids anaerobic digestion of food waste:effects of ammonia on process performance and microbial community[J]. Bioresource Technology, 2018, 262:148-158.
    [27] ZHANG H, PENG Y, YANG P, et al. Response of process performance and microbial community to ammonia stress in series batch experiments[J]. Bioresource Technology, 2020, 314:123768.
    [28] YE M, ZHU A, SUN B, et al. Methanogenic treatment of dairy product wastewater by thermophilic anaerobic membrane bioreactor:ammonia inhibition and microbial community[J]. Bioresource Technology, 2022, 357:127349.
    [29] MLINAR S, WEIG A R, FREITAG R. Influence of NH3 and NH4+ on anaerobic digestion and microbial population structure at increasing total ammonia nitrogen concentrations[J]. Bioresource Technology, 2022, 361:127638.
    [30] CYPIONKA H, WIDDEL F, PFENNIG N. Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients[J]. FEMS microbiology ecology, 1985, 1(1):39-45.
    [31] BOONE D R, BRYANT M P. Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems[J]. Applied and Environmental Microbiology, 1980, 40(3):626-632.
    [32] DWYER D F, WEEG-AERSSENS E, SHELTON D R, et al. Bioenergetic conditions of butyrate metabolism by a syntrophic, anaerobic bacterium in coculture with hydrogen-oxidizing methanogenic and sulfidogenic bacteria[J]. Applied and Environmental Microbiology, 1988, 54(6):1354-1359.
    [33] LIU C, ZHANG X, CHEN C, et al. Physiological responses of Methanosarcina barkeri under ammonia stress at the molecular level:the unignorable lipid reprogramming[J]. Environmental Science & Technology, 2023, 57(9):3917-3929.
    [34] MCNEIL P L, STEINHARDT R A. Loss, restoration, and maintenance of plasma membrane integrity[J]. The Journal of Cell Biology, 1997, 137(1):1-4.
    [35] CALLI B, MERTOGLU B, INANC B, et al. Methanogenic diversity in anaerobic bioreactors under extremely high ammonia levels[J]. Enzyme and Microbial Technology, 2005, 37(4):448-455.
    [36] CALLI B, MERTOGLU B, INANC B, et al. Community changes during start-up in methanogenic bioreactors exposed to increasing levels of ammonia[J]. Environmental Technology, 2005, 26(1):85-91.
    [37] JEYENDRAN R, VAN DER VEN H, PEREZ-PELAEZ M, et al. Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics[J]. Reproduction, 1984, 70(1):219-228.
    [38] ROY S, MONDAL A, YADAV V, et al. Mechanistic insight into the antibacterial activity of chitosan exfoliated MoS2 nanosheets:membrane damage, metabolic inactivation, and oxidative stress[J]. ACS Applied Bio Materials, 2019, 2(7):2738-2755.
    [39] SCHNAIDER L, BRAHMACHARI S, SCHMIDT N W, et al. Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity[J]. Nature Communication, 2017, 8(1):1365.
    [40] PENG Y, LI L, YANG P, et al. Integrated genome-centric metagenomic and metaproteomic analyses unravel the responses of the microbial community to ammonia stress[J]. Water Research, 2023, 242:120239.
    [41] PADMAKUMAR R, PADMAKUMAR R, BANERJEE R. Evidence that cobalt-carbon bond homolysis is coupled to hydrogen atom abstraction from substrate in methylmalonyl-CoA mutase[J]. Biochemistry, 1997, 36(12):3713-3718.
    [42] WEBSTER M W, TAKACS M, ZHU C, et al. Structural basis of transcription-translation coupling and collision in bacteria[J]. Science, 2020, 369(6509):1355-1359.
    [43] KORKHIN Y, UNLIGIL U M, LITTLEFIELD O, et al. Evolution of complex RNA polymerases:the complete archaeal RNA polymerase structure[J]. PLoS Biology, 2009, 7(5):e1000102.
    [44] YUSUPOV M M, YUSUPOVA G Z, BAUCOM A, et al. Crystal structure of the ribosome at 5.5Å resolution[J]. Science, 2001, 292(5518):883-896.
    [45] SCHMEING T M, VOORHEES R M, KELLEY A C, et al. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA[J]. Science, 2009, 326(5953):688-694.
    [46] KAYHANIAN M. Ammonia inhibition in high-solids biogasification:an overview and practical solutions[J]. Environmental Technology, 1999, 20(4):355-365.
    [47] FERREIRA T, CARRONDO M, ALVES P. Effect of ammonia production on intracellular pH:consequent effect on adenovirus vector production[J]. Journal of Biotechnology, 2007, 129(3):433-438.
    [48] SPROTT G D, SHAW K M, JARRELL K F. Ammonia/potassium exchange in methanogenic bacteria[J]. Journal of Biological Chemistry, 1984, 259(20):12602-12608.
    [49] WITTMANN C, ZENG A P, DECKWER W D. Growth inhibition by ammonia and use of a pH-controlled feeding strategy for the effective cultivation of Mycobacterium chlorophenolicum[J]. Applied Microbiology and Biotechnology, 1995, 44(3):519-525.
    [50] KUHNER C, DRAKE H, ALM E, et al. Methane production and oxidation by soils from acidic forest wetlands of east-central Germany[C]//Abstr 96th Gen Meet Am Soc Microbiol American Society for Microbiology. Washington, DC, 1996:304.
    [51] LLOYD C T, IWIG D F, WANG B, et al. Discovery, structure and mechanism of a tetraether lipid synthase[J]. Nature, 2022, 609(7925):197-203.
    [52] HARAYAMA T, RIEZMAN H. Understanding the diversity of membrane lipid composition[J]. Nature Reviews Molecular Cell Biology, 2018, 19(5):281-296.
    [53] LOPEZ-LARA I M, GEIGER O. Bacterial lipid diversity[J]. Biochimica et biophysica acta:molecular and cell biology of lipids, 2017, 1862(11):1287-1299.
    [54] QI Z, SUN N, LIU C. Glyoxylate cycle maintains the metabolic homeostasis of Pseudomonas aeruginosa in viable but nonculturable state induced by chlorine stress[J]. Microbiological Research, 2023, 270:127341.
    [55] BALLWEG S, SEZGIN E, DOKTOROVA M, et al. Regulation of lipid saturation without sensing membrane fluidity[J]. Nature Communinations, 2020, 11(1):756.
    [56] LI R, GUINEY L M, CHANG C H, et al. Surface oxidation of graphene oxide determines membrane damage, lipid peroxidation, and cytotoxicity in macrophages in a pulmonary toxicity model[J]. ACS Nano, 2018, 12(2):1390-1402.
    [57] SHANTA P V, LI B, STUART D D, et al. Lipidomic profiling of algae with microarray MALDI-MS toward ecotoxicological monitoring of herbicide exposure[J]. Environmental Science & Technology, 2021, 55(15):10558-10568.
    [58] MARQUENO A, BLANCO M, MACEDA-VEIGA A, et al. Skeletal muscle lipidomics as a new tool to determine altered lipid homeostasis in fish exposed to urban and industrial wastewaters[J]. Environmental Science Technology, 2019, 53(14):8416-8425.
    [59] TANIGUCHI M, OKAZAKI T. The role of sphingomyelin and sphingomyelin synthases in cell death, proliferation and migration-from cell and animal models to human disorders[J]. Biochimica Biophysica Acta, Mol. Cell Biology Lipids, 2014, 1841(5):692-703.
    [60] TANIGUCHI M, OKAZAKI T. Role of ceramide/sphingomyelin (SM) balance regulated through "SM cycle" in cancer[J]. Cell Signalling, 2021, 87:110119.
    [61] YANG P, PENG Y, LIU H, et al. Multi-scale analysis of the foaming mechanism in anaerobic digestion of food waste:from physicochemical parameter, microbial community to metabolite response[J]. Water Research, 2022, 218:118482.
  • 期刊类型引用(17)

    1. 黎媛萍,邹斌,贾舜尧,陈鹏宇,朱晨阳,刘政伟,周天运,赵一,朱梨. 污泥基生物炭的制备及其在环境污染治理中的应用. 湖南城市学院学报(自然科学版). 2024(01): 68-73 . 百度学术
    2. 冷杰雯,时珂,王雪婧,寇巍,付晓伟,孙兆楠. 市政污泥基制备生物炭吸附四环素的性能研究. 环境工程. 2024(05): 75-82 . 本站查看
    3. 谢鹏程,高海涛,熊健,杨博,黄瑞卿,周海洋,李伟. 污泥生物炭的制备及其对亚甲基蓝的吸附研究. 应用化工. 2024(05): 1071-1075 . 百度学术
    4. 张婉婷,李飞跃. 污泥生物炭的制备及其应用研究进展. 鲁东大学学报(自然科学版). 2024(04): 370-377 . 百度学术
    5. 林金毫,黄建智,李衍亮. 基于玉米秸秆和荔枝树枝生物炭的电化学传感器对水中镉离子的检测. 微纳电子技术. 2024(11): 179-188 . 百度学术
    6. 陈伟华,徐大勇,曾繁春. 不同温度热解制备污泥生物炭粒处理酸性矿山废水的试验研究. 地球与环境. 2024(06): 782-792 . 百度学术
    7. 曾涛涛,农海杜,沙海超,陈胜兵,张晓玲,刘金香. 污泥基生物炭负载纳米零价铁去除Cr(Ⅵ)的性能与机制. 复合材料学报. 2023(02): 1037-1049 . 百度学术
    8. 吕思璐,刘天,王旭,左开霞,谢燕华. 硫化亚铁改性生物炭对水中Cr(Ⅵ)的去除机理研究. 中国环境科学. 2023(08): 3935-3945 . 百度学术
    9. 曹秀芹,刘丰,柴莲莲,朱开金,谭俊华. 污泥生物炭制备与其对土壤环境影响的研究进展. 环境工程. 2022(03): 203-211 . 本站查看
    10. 张奎,王雪梅,李玉环,张瑜,刘梦娟,蒋雪萍,季宏兵. 硫改性牛粪生物炭对Hg~(2+)的高效吸附及其机理. 环境工程. 2022(04): 79-88 . 本站查看
    11. 翟付杰,张超,宋刚福,姜时欣,单保庆,宋志鑫. 木棉生物炭对水体中Cr(Ⅵ)的吸附特性和机制研究. 环境科学学报. 2021(05): 1891-1900 . 百度学术
    12. 梁宁,莫福金,周街荣,王军正. 污泥生物炭制备及其对磷的吸附性能研究. 无机盐工业. 2021(06): 174-179 . 百度学术
    13. 王志朴,热则耶,张大旺,刘丹,赵清英,舒新前. 污泥基生物炭用于土壤中Cr的钝化及作用机制分析. 环境工程. 2021(05): 178-183 . 本站查看
    14. 何苑静,张定定,王曦,梁玺静,许士洪,李登新. 改性水热炭同时吸附溶液中Cr(Ⅵ)和Cd(Ⅱ). 化工环保. 2021(05): 623-629 . 百度学术
    15. 李胜红,朱芬芬. 原污泥与脱脂污泥制备生物炭的比较及其特性分析. 环境工程. 2021(09): 154-159+192 . 本站查看
    16. 周岩,任玉忠,王玮涵. 污泥生物炭的制备及处理印染废水效能试验研究. 工业用水与废水. 2021(06): 45-48 . 百度学术
    17. 李艺,史会剑,吴春辉,刘忠林,高诗倩,刘光辉,王宇辰. 阳离子表面活性剂改性沸石吸附水体中重金属的研究综述. 净水技术. 2020(12): 73-79 . 百度学术

    其他类型引用(15)

  • 加载中
计量
  • 文章访问数:  348
  • HTML全文浏览量:  49
  • PDF下载量:  10
  • 被引次数: 32
出版历程
  • 收稿日期:  2023-07-20
  • 网络出版日期:  2023-11-15

目录

    /

    返回文章
    返回