ALKALINE-THERMAL HYDROLYSIS OF SEWAGE SLUDGE DIGESTATE AND ITS PERFORMANCE IN ANAEROBIC FERMENTATION
-
摘要: 针对污泥沼渣中有机质难以回收利用的问题,利用热碱法破解污泥沼渣,探究了不同条件对沼渣破解率和有机物溶出率的影响,确定了热碱法处理污泥沼渣的最佳条件为:pH=13、T=80℃、t=8 h。此条件下,污泥沼渣的破解率为40.9%,COD、蛋白质、多糖的溶出率分别为722.2,79.7,73.7 mg/g VSS。利用热碱处理后的污泥沼渣破解液进行厌氧发酵产甲烷,比较了不同初始pH值对厌氧发酵的影响,发现初始pH值的改变对有机物降解率的影响较小,但初始pH值的增加会提高发酵过程中CH4的产率,降低CO2的产率,提高产气中CH4含量。因此确定初始pH值=13时污泥沼渣破解液产甲烷效果最好,此时COD去除率为61.1%,CH4产率达到65.0 mL/g VSS,产气中CH4含量能够达到81.0%。该研究证明热碱处理可提高污泥沼渣的可生化性,具有应用于厌氧发酵产甲烷的潜力。Abstract: To recover and reuse the organic matter in sewage sludge digestate, this work adopted alkaline-thermal hydrolysis to treat the digestate, exploring the effects of different conditions on its disintegration and organics dissolution efficiency. The optimal conditions for alkaline-thermal hydrolysis of sewage sludge digestate were determined as pH=13, T=80℃, and t=8 h. Under these conditions, the disintegration efficiency of sewage sludge digestate achieved 40.9%, with the dissolution efficiency of COD, protein, and polysaccharide of 722.2, 79.7, and 73.7 mg/g VSS, respectively. The sewage sludge digestate after alkaline-thermal hydrolysis was used as substrates for anaerobic fermentation to produce methane. The effect of initial pH on anaerobic fermentation was further investigated. It was found that the best methane yield was achieved at the initial pH of 13, and the COD removal efficiency was 61.1% with a methane yield of 65.0 mL/g VSS and a methane proportion of 81.0% in the produced biogas. This work confirms that alkaline-thermal hydrolysis can improve the biodegradability of sewage sludge digestate, and its potential in producing methane through anaerobic fermentation.
-
[1] 戴晓虎. 我国污泥处理处置现状及发展趋势[J]. 科学, 2020,72(6):30-34. [2] 黄慧, 高磊. 污水处理厂污泥处理处置现状及利用分析[J]. 能源与节能, 2022(9):46-48. [3] 李小伟, 董滨, 戴晓虎. 污泥沼渣深度处理过程中有机物变化规律研究[Z]. 杭州, 2017. [4] 赵丹, 韩晓宇, 张树军, 等. PN/A-颗粒污泥工艺处理热水解污泥消化液[J]. 中国环境科学, 2022,42(11):5108-5116. [5] 邹瑜, 张国权, 徐晓晨, 等. SNAD-藻类工艺在污泥消化液处理中的应用[J]. 中国给水排水, 2021,37(15):14-20. [6] SHI S, FAN X, HE X, et al. Enhanced nitritation/denitritation and potential mechanism in an electrochemically assisted sequencing batch biofilm reactor treating sludge digester liquor with extremely low C/N ratios[J]. Bioresource Technology, 2022,363:127936. [7] ESKICIOGLU C, GALVAGNO G, CIMON C. Approaches and processes for ammonia removal from side-streams of municipal effluent treatment plants[J]. Bioresource Technology, 2018,268:797-810. [8] 张新颖, 孔翎维, 刘晓艳, 等. 一种采用污泥沼渣制备绿化植物基质的方法:CN110235742A[P]. 2019. [9] 白玲, 李倩, 邓芸, 等. 沼渣与餐厨废弃物、牛粪联合堆肥的腐殖化进程研究[J]. 农业机械学报, 2019,50(8):331-338. [10] 戴晓虎. 我国城镇污泥处理处置现状及思考[J]. 给水排水, 2012,48(2):1-5. [11] AWISZUS S, MEISSNER K, REYER S, et al. Gas-releasing potential of biogas digestate[J]. BIOFUELS-UK, 2021,12(6):689-695. [12] SAMBUSITI C, MONLAU F, FICARA E, et al. Comparison of various post-treatments for recovering methane from agricultural digestate[J]. Fuel Processing Technology, 2015,137:359-365. [13] WISNIEWSKI D, GOLASZEWSKI J, BIALOWIEC A. The pyrolysis and gasification of digestate from agricultural biogas plant[J]. Archives of Environmental Protection, 2015,41(3):70-75. [14] RUIZ H A, RODRIGUEZ-JASSO R M, FERNANDES B D, et al. Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept:a review[J]. Renewable & Sustainable Energy Reviews, 2013,21:35-51. [15] GARROTE G, DOMINGUEZ H, PARAJO J C. Hydrothermal processing of lignocellulosic materials[J]. Holz Als Roh-Und Werkstoff, 1999,57(3):191-202. [16] 肖本益, 刘俊新. 不同预处理方法对剩余污泥性质的影响研究[J]. 环境科学, 2008(2):2327-2331. [17] 严媛媛, 陈汉龙, 何群彪, 等. 热碱预处理改善低有机质污泥厌氧消化性能的效果[J]. 中国给水排水, 2012,28(23):9-13. [18] 赵虹焰, 周集体, 金若菲, 等. 热碱法破解污泥动态实验的条件优化[J]. 环境工程, 2020,38(7):71-74, 121. [19] 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002. [20] 孙士青, 王少杰, 李秋顺, 等. 考马斯亮蓝法快速测定乳品中蛋白质含量[J]. 山东科学, 2011,24(6):53-55. [21] 姜琼, 谢妤. 苯酚-硫酸法测定多糖方法的改进[J]. 江苏农业科学, 2013(12):316-317, 318. [22] INOUE S, SAWAYAMA S, OGI T, et al. Organic composition of liquidized sewage sludge[J]. BIOMASS & BIOENERGY, 1996,10(1):37-40. [23] LEFEBVRE D, DOSSAT-Letisse V, LEFEBVRE X, et al. Fate of organic matter during moderate heat treatment of sludge:kinetics of biopolymer and hydrolytic activity release and impact on sludge reduction by anaerobic digestion[J]. Water Science and Technology, 2014,69(9):1828-1833. [24] 宜慧, 韩芸, 李玉友, 等. 碱解+低温水热预处理改善剩余污泥中温厌氧消化性能工艺[J]. 环境工程学报, 2014,8(9):3927-3932. [25] RUGHOONUNDUN H, GRANDA C, MOHEE R, et al. Effect of thermochemical pretreatment on sewage sludge and its impact on carboxylic acids production[J]. Waste Management, 2010,30(8):1614-1621. [26] 何培培, 余光辉, 邵立明, 等. 污泥中蛋白质和多糖的分布对脱水性能的影响[J]. 环境科学, 2008,29(12):3457-3461. [27] 胡亚东, 袁月祥, 闫志英, 等. 一株生长pH较宽的产甲烷菌分离与系统发育分析[J]. 应用与环境生物学报, 2009,15(4):554-558. [28] MA S, HU H, WANG J, et al. The characterization of dissolved organic matter in alkaline fermentation of sewage sludge with different pH for volatile fatty acids production[J]. Water Research, 2019,164:114924. [29] GOSWAMI R, CHATTOPADHYAY P, SHOME A, et al. An overview of physico-chemical mechanisms of biogas production by microbial communities:a step towards sustainable waste management[J]. 3 Biotech, 2016,6(1):12-72. [30] WU H, GAO J, YANG D, et al. Alkaline fermentation of primary sludge for short-chain fatty acids accumulation and mechanism[J]. Chemical Engineering Journal, 2010,160(1):1-7. [31] 王太恒, 陈彩霞, 王旭东, 等. 不同剂量臭氧预处理污泥厌氧发酵产甲烷效果评价[J]. 中国海洋大学学报(自然科学版), 2021,51(11):59-65, 93. [32] 李秋实, 郭祥, 刘彬, 等. 市政污泥与玉米秸秆混合高温厌氧发酵产甲烷研究[J]. 环境工程, 2022,40(7):139-145. [33] 常城, 明磊强, 牟云飞, 等. 厨余垃圾与污泥厌氧发酵产甲烷的协同作用[J]. 中国环境科学, 2022,42(3):1259-1266.
点击查看大图
计量
- 文章访问数: 82
- HTML全文浏览量: 16
- PDF下载量: 4
- 被引次数: 0