ROAD MAP FOR CUSTRUCTING CARBON NEUTRAL WASTEWATER TREATMENT PLANTS
-
摘要: 当前,在环境污染日益严重的同时,气候变化不断加剧,人类社会的可持续发展面临着严峻挑战。作为污染物和温室气体排放的关键环节,构建碳中和污水处理厂、实现减污降碳协同成为新时期环境治理的重要方向。围绕碳中和污水厂构建路径,从污水处理过程的能耗控制与能量自给、污水处理工艺的减药与碳源利用、污水再生与有价物质的循环利用等方面进行了系统解析,并评估了相关举措的碳减排效益。面向未来,推动能耗优化与清洁能源使用,降低处理过程碳耗药耗,提高污水再生与有价物质循环利用等措施,结合科技创新、政策制定、城市规划等综合举措,将有助于加速污水处理厂碳中和进程,并最终形成以水为核心的碳中和城市构建蓝色方案。Abstract: When environmental pollution worsens and climate change intensifies, sustainable development of human society faces severe challenges. As a crucial component, wastewater treatment plays an essential role, and constructing carbon-neutral wastewater treatment plants to achieve both pollution and carbon reduction becomes a critical step towards the Dual Carbon Goals. In this paper, we systematically analyze the road map for constructing carbon-neutral wastewater treatment plants, focusing on the aspects such as energy consumption control and energy self-sufficiency in the treatment processes, reduction of chemicals and carbon source utilization in treatment processes, and recycling of water and valuable materials. We also evaluate the carbon reduction benefits of these relevant measures. Looking to the future, measures to promote energy optimization and usage of cleaner energy, reduce carbon and chemical consumption, and enhance water reclamation and the circular utilization of valuable materials, combined with comprehensive approaches involving technological innovation, policy-making, and urban planning, will help accelerate the carbon-neutral process of wastewater treatment plants construction and establish blue routes for constructing carbon-neutral cities.
-
Key words:
- wastewater treatment plant /
- carbon neutral /
- resource recovery /
- energy recovery /
- water reuse
-
[1] DU W, LU J, HU Y, et al. Spatiotemporal pattern of greenhouse gas emissions in China's wastewater sector and pathways towards carbon neutrality[J]. Nature Water, 2023, 1(2):166-175. [2] 郭盛杰, 董欣, 曾思育. 基于数据包络分析的中国城镇污水处理厂综合效能评估[J]. 给水排水, 2021, 47(10):33-38. [3] 蒋勇, 阜葳, 毛联华, 等. 城市污水处理厂运行能耗影响因素分析[J]. 北京交通大学学报, 2014, 38(1):33-37. [4] 杨敏, 李亚明, 魏源送, 等. 大型再生水厂不同污水处理工艺的能耗比较与节能途径[J]. 环境科学, 2015, 36(6):2203-2209. [5] 张羽就, 席佳锐, 陈玲, 等. 中国城镇污水处理厂能耗统计与基准分析[J]. 中国给水排水, 2021, 37(8):8-17. [6] GIKAS P. Towards energy positive wastewater treatment plants[J]. Journal of Environmental Management, 2017, 203:621-629. [7] YUAN Z, OLSSON G, CARDELL-OLIVER R, et al. Sweating the assets-The role of instrumentation, control and automation in urban water systems[J]. Water Research, 2019, 155:381-402. [8] SARPONG G, GUDE V G, Codigestion and combined heat and power systems energize wastewater treatment plants:analysis and case studies[J]. Renewable and Sustainable Energy Reviews, 2021, 144:110937. [9] HAO X, LI J, VAN LOOSDRECHT M C M, et al. Energy recovery from wastewater:heat over organics[J]. Water Research, 2019, 161:74-77. [10] PANG C, LU X, RONG B, et al. Carbon emission accounting and the carbon neutralization model for a typical wastewater Treatment Plant in China[J]. International Journal of Environmental Research and Public Health, 2022, 20(1):140. [11] LI L, WANG X, MIAO J, et al. Carbon neutrality of wastewater treatment:a systematic concept beyond the plant boundary[J]. Environmental Science and Ecotechnology, 2022, 11:100180. [12] 王庆会. 新概念污水处理厂碳排放量核算研究:以睢县第三污水处理厂为例[D]. 郑州:华北水利水电大学, 2022. [13] 国家统计局. 市政基础设施统计年鉴[M]. 北京:中国国家统计局, 2021. [14] 包遵胜, 熊晓励, 刘纪成, 等. 某污水深度处理厂人工精细化调控碳源投加量的探究[J]. 环境工程, 2023, 41(4):137-142. [15] 吴宇行, 王晓东, 陈宁, 等. 典型城镇污水处理厂碳源智能投加控制生产性试验[J]. 环境工程, 2022, 40(6):212-218, 271. [16] 刘智晓. 未来污水处理能源自给新途径:碳源捕获及碳源改向[J]. 中国给水排水, 2017, 33(8):43-52. [17] 肖思海, 汪莉. 污水处理厂内碳源利用的研究[J]. 环境科技, 2014, 27(3):20-23. [18] 高永青. 污泥厌氧发酵碳源强化生活污水脱氮除磷及污泥减量[D]. 北京:北京工业大学, 2011. [19] 潘晨驰, 黄会斐, 贡协伟, 等. 易腐垃圾沼液作为污水处理厂补充碳源的资源化利用探索:以浙江某污水处理厂为例[J]. 环境污染与防治, 2023, 45(4):499-505, 510. [20] 徐锁洪, 施巍. 以稻壳为载体培养反硝化菌及硝酸盐氮的去除[J]. 大连铁道学院学报, 2001, 22(4):98-101. [21] 尹亚云, 蒲文鹏, 陈永娟, 等. 污水处理厂化学除磷精确控制系统研究:以山东某污水处理厂为例[J]. 四川环境, 2021, 40(1):228-232. [22] 张帅, 矫忠直, 周俊强, 等. 精确除磷加药控制系统模型在宿迁市某污水厂的应用[J]. 广东化工, 2023, 50(9):184-186, 202. [23] 陈珺, 赵荣生, 杨廷光, 等. 慈溪东部污水处理厂化学除磷工艺模拟与实时控制[J]. 给水排水, 2022, 48(4):56-60. [24] 杨绍鹏, 刘蕾, 周孟博. 加快餐厨垃圾资源化利用助力碳中和与粮食安全[J]. 中国经贸导刊, 2023, 1041(3):50-52. [25] 胡洪营, 杜烨, 吴乾元, 等. 系统工程视野下的再生水饮用回用安全保障体系构建[J]. 环境科学研究, 2018, 31(7):1163-1173. [26] 徐傲, 巫寅虎, 陈卓, 等. 北京市城镇污水再生利用现状与潜力分析[J]. 环境工程, 2021, 39(9):1-6, 47. [27] 国家市场监督管理总局,国家标准化管理委员会. 水回用导则再生水分级:GB/T 41018-2021[S]. 北京:中国标准出版社, 2021. [28] WILFERT P, DUGULAN A I, GOUBITZ K, et al. Vivianite as the main phosphate mineral in digested sewage sludge and its role for phosphate recovery[J]. Water Research, 2018, 144:312-321. [29] 郝晓地, 郭小媛, 刘杰, 等. 磷危机下的磷回收策略与立法[J]. 环境污染与防治, 2021, 43(9):1196-1200. [30] MATASSA S, BATSTONE D J, HVLSEN T, et al. Can direct conversion of used nitrogen to new feed and protein help feed the world?[J]. Environmental Science & Technology, 2015, 49(9):5247-5254. [31] 罗雨莉, 潘艺蓉, 马嘉欣, 等. 污水再生与增值利用的碳排放研究进展[J]. 环境工程, 2022, 40(6):83-91,187. [32] WANG S, LIU Q, LI J, et al.Methane in wastewater treatment plants:status, characteristics, and bioconversion feasibility by methane oxidizing bacteria for high value-added chemicals production and wastewater treatment[J]. Water Research, 2021, 198:117122. [33] MATASSA S, VERSTRAETE W, PIKAAR I, et al. Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria[J]. Water Research, 2016, 101:137-146. [34] HONDA R, FUKUSHI K, YAMAMOTO K. Optimization of wastewater feeding for single-cell protein production in an anaerobic wastewater treatment process utilizing purple non-sulfur bacteria in mixed culture condition[J]. Journal of Biotechnology, 2006, 125(4):565-573. [35] BALDI F, PECORINI I, IANNELLI R. Comparison of single-stage and two-stage anaerobic co-digestion of food waste and activated sludge for hydrogen and methane production[J]. Renewable Energy, 2019, 143:1755-1765. [36] 郝晓地, 赵梓丞, 李季, 等. 污泥EPS作为阻燃剂的机制归纳与潜力分析[J]. 环境科学, 2021, 42(6):2583-2594. [37] KIM N K, MAO N, LIN R, et al. Flame retardant property of flax fabrics coated by extracellular polymeric substances recovered from both activated sludge and aerobic granular sludge[J]. Water Research, 2020, 170:115344.
点击查看大图
计量
- 文章访问数: 184
- HTML全文浏览量: 9
- PDF下载量: 24
- 被引次数: 0