中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水中磺胺类药物的氧化降解、反应途径及其产物毒性研究进展

周名 钟晨 赵赫 曹宏斌

周名, 钟晨, 赵赫, 曹宏斌. 水中磺胺类药物的氧化降解、反应途径及其产物毒性研究进展[J]. 环境工程, 2023, 41(9): 187-193. doi: 10.13205/j.hjgc.202309023
引用本文: 周名, 钟晨, 赵赫, 曹宏斌. 水中磺胺类药物的氧化降解、反应途径及其产物毒性研究进展[J]. 环境工程, 2023, 41(9): 187-193. doi: 10.13205/j.hjgc.202309023
ZHOU Ming, ZHONG Chen, ZHAO He, CAO Hongbin. RESEARCH PROGRESS ON OXIDATIVE DEGRADATION, REACTION PATHWAYS AND PRODUCT TOXICITY OF SULFONAMIDES IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 187-193. doi: 10.13205/j.hjgc.202309023
Citation: ZHOU Ming, ZHONG Chen, ZHAO He, CAO Hongbin. RESEARCH PROGRESS ON OXIDATIVE DEGRADATION, REACTION PATHWAYS AND PRODUCT TOXICITY OF SULFONAMIDES IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 187-193. doi: 10.13205/j.hjgc.202309023

水中磺胺类药物的氧化降解、反应途径及其产物毒性研究进展

doi: 10.13205/j.hjgc.202309023
基金项目: 

国家自然科学基金面上项目(51978643);国家中组部"万人计划"青年拔尖人才计划

详细信息
    作者简介:

    周名(1999-),男,研究生,主要研究方向为环境水处理技术。m18801312202@163.com

    通讯作者:

    赵赫(1981-),女,研究员,主要研究方向为工业减污降碳。hzhao@ipe.ac.cn

RESEARCH PROGRESS ON OXIDATIVE DEGRADATION, REACTION PATHWAYS AND PRODUCT TOXICITY OF SULFONAMIDES IN WATER

  • 摘要: 磺胺类药物(SAs)是目前最常见的抗菌类抗生素之一,已在污水处理厂出水和自然水环境等检出,对水生动植物、微生物与人体健康产生潜在危害。但是目前水中微量SAs采用常规生物法降解处理效果并不显著。氧化法作为有效去除水体中SAs的方法之一,是水处理的研究热点。针对水中磺胺类抗生素的药效机理和危害,系统综述了水中磺胺类抗生素的氧化降解的研究进展,阐明了不同氧化方法、反应途径与产物毒性之间的内在联系。同时指出了高级氧化方法在加速磺胺类抗生素去除转化方面效果更好,而直接氧化在减少高毒性中间产物累积和减少抗生素抗性基因方面更具有优势。因此,开发高效的氧化方法需要密切关注磺胺类抗生素中间产物的累积和抗生素的耐药性。
  • [1] 王大鹏,张娴,颜昌宙.4种磺胺类药物及乙酰化代谢物在污水处理厂的去除及机制[J].环境科学,2019,40(3):1347-1352.
    [2] 綦峥,杨红,张铁林,等.畜牧场中磺胺类抗生素及其抗性基因的空间分布规律[J].生态毒理学报,2021,16(1):215-222.
    [3] 李婧,崔诗瑶,曹海艳,等.蔬菜对水中磺胺甲恶唑的吸收与累积作用[J].畜牧与饲料科学,2016,37(9):12-14

    ,18.
    [4] 李婧,崔诗瑶,曹海艳,等.蔬菜对水中磺胺甲恶唑的吸收与累积作用[J].畜牧与饲料科学,2016,37(9):12-14

    ,18.
    [5] LIU X,HUANG F,YU Y, et al. Determination and toxicity evaluation of the generated byproducts from sulfamethazine degradation during catalytic oxidation process[J].Chemosphere, 2019,226:103-109.
    [6] LV Y, LI Y, LIU X,et al.Effect of soil sulfamethoxazole on strawberry (Fragaria ananassa):growth, health risks and silicon mitigation[J].Environmental Pollution, 2021, 286:117321.DOI: 10.1016/j.envpol.2021.117321.
    [7] 张梦雪,赵义良,苏青,等.水产品中磺胺类药物残留危害及常用检测方法[J].今日畜牧兽医, 2019, 35(7):2.
    [8] LOU X, LIU Z, FANG C, et al. Fate of sulfamethoxazole and potential formation of haloacetic acids during chlorine disinfection process in aquaculture water[J].Environmental Research, 2021,204:111958-111958. DOI: 10.1016/j.envres.2021.111958.
    [9] ZHANG C, TIAN S, QIN F,et al.Catalyst-free activation of permanganate under visible light irradiation for sulfamethazine degradation:experiments and theoretical calculation[J].Water Research, 2021, 194(7):116915.DOI: 10.1016/j.watres.2021.116915.
    [10] FENG M, BAUM J C, NESNAS N,et al.Oxidation of sulfonamide antibiotics of six-membered heterocyclic moiety by Ferrate(Ⅵ):kinetics and mechanistic insight into SO2 extrusion[J].Environmental Science & Technology, 2019, 53(5):2695-2704.
    [11] DAR A A, SHAD A, QU R,et al.Degradation of sulfadimethoxine in phosphate buffer solution by UV alone, UV/PMS and UV/H2O2:kinetics, degradation products, and reaction pathways[J/OL].Chemical Engineering Journal, 2020, 398:125357.DOI: 10.1016/j.cej.2020.125357.
    [12] WANG J,ZHUAN R,CHU L. The occurrence, distribution and degradation of antibiotics by ionizing radiation:an overview[J]. Science of the Total Environment,2019,646:1385-1397.
    [13] LIU X,GAROMA T,CHEN Z, et al.SMX degradation by ozonation and UV radiation:a kinetic study[J].Chemosphere, 2012, 87(10):1134-1140.
    [14] LIU, X S, et al.Oxidation of sulfadiazine and sulfamethoxazole through O3, UV, and UV/O3 processes[J]. Desalination and Water Treatment, 2021, 222:346-353.
    [15] FAN Y,JI Y,KONG D, et al.Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process[J].Journal of Hazardous Materials, 2015, 300:39-47.
    [16] FU J,FENG L,LIU Y,et al.Electrochemical activation of peroxymonosulfate (PMS) by carbon cloth anode for sulfamethoxazole degradation[J]. Chemosphere, 2022, 287:132094.DOI: 10.1016/j.chemosphere.2021.132094.
    [17] XIU W,WEN J,et al.Mechanisms and toxicity evaluation of the degradation of sulfamethoxazole by MPUV/PMS process[J].Chemosphere, 2018,212:365-375.
    [18] FENG Y, et al.Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation[J]. Chemical Engineering Journal, 2015, 280:514-524.
    [19] WANG Z, WANG J, XIONG B,et al. Application of cobalt/peracetic acid to degrade sulfamethoxazole at neutral condition:efficiency and mechanisms[J]. Environmental Science & Technology,2020,54(1):464-475.
    [20] HU L H, et al. Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis[J]. Water Research, 2007, 41(12):2612-2626.
    [21] QI C,LIU X,LIN C, et al. Degradation of sulfamethoxazole by microwave-activated persulfate:kinetics, mechanism and acute toxicity[J]. Chemical Engineering Journal,2014,249:6-14.
    [22] MILH H, CABOOTER D, DEWIL R. Role of process parameters in the degradation of sulfamethoxazole by heat-activated peroxymonosulfate oxidation:radical identification and elucidation of the degradation mechanism[J].Chemical Engineering Journal, 2021, 422:130457.DOI: 10.1016/j.cej.2021.130457.
    [23] ZAJICEK P, et al.Oxidative degradation of triazine- and sulfonylurea-based herbicides using Fe(Ⅵ):the case study of atrazine and iodosulfuron with kinetics and degradation products[J]. Separation and Purification Technology, 2015, 156:1041-1046.
    [24] MAO Y X,LIANG J L,JI F Y, et al. Accelerated degradation of pharmaceuticals by ferrous ion/chlorine process:roles of Fe(Ⅳ) and reactive chlorine species[J]. Science of the Total Environment,2021,787(1):147584.DOI: 10.1016/j.scitotenv.2021.147584.
    [25] ALFONS P,JONGSAY Y. Population ageing and its implications on aggregate health care demand:empirical evidence from 22 OECD countries[J]. International Journal of Health Care Finance and Economics,2009,9(4):391-402.
    [26] WANG J, WANG Z, CHENG Y,et al.Molybdenum disulfide (MoS2):a novel activator of peracetic acid for the degradation of sulfonamide antibiotics[J].Water Research, 2021(1/2):117291.DOI: 10.1016/j.watres.2021.117291.
    [27] BAO Y, LEE W J, Guan C,et al.Highly efficient activation of peroxymonosulfate by bismuth oxybromide for sulfamethoxazole degradation under ambient conditions:synthesis, performance, kinetics and mechanisms[J].Separation and Purification Technology, 2021, 276:119203. DOI: 10.1016/j.seppur.2021.119203.
    [28] JI Y,LU J,et al. Non-activated peroxymonosulfate oxidation of sulfonamide antibiotics in water:kinetics, mechanisms, and implications for water treatment[J]. Water Research,2018,147:82-90.
    [29] YANG X, DING X, ZHOU L,et al.Direct oxidation of antibiotic trimethoprim by unactivated peroxymonosulfate via a nonradical transformation mechanism[J].Chemosphere, 2020, 263(11):128194.DOI: 10.1016/j.chemosphere.2020.128194.
    [30] JI Y, SHI Y, WANG L,et al.Sulfate radical-based oxidation of antibiotics sulfamethazine, sulfapyridine, sulfadiazine, sulfadimethoxine, and sulfachloropyridazine:formation of SO2 extrusion products and effects of natural organic matter[J].Science of the Total Environment, 2017, 593-594:704.
    [31] WU J X, WANG B, BLANEY L,et al.Degradation of sulfamethazine by persulfate activated with organo-montmorillonite supported nano-zero valent iron[J].Chemical Engineering Journal, 2019,361:99-108.
    [32] TAO X, HUANG P, CHEN T, et al.In-situ construction of Co(OH)2 nanoparticles decorated urchin-like WO3 for highly efficient degradation of sulfachloropyridazine via peroxymonosulfate activation:intermediates and DFT calculation[J]. Chemical Engineering Journal, 2020, 395:125168.DOI: 10.1016/j.cej.2020.125186.
    [33] MIRZAEI A, EDDAN M, STEPHANIE R, et al.Multiple-homojunction gradient nitrogen doped TiO2 for photocatalytic degradation of sulfamethoxazole, degradation mechanism, and toxicity assessment[J].Chemical Engineering Journal, 2021, 422:130507.DOI: 10.1016/j.cej.2021.130507.
    [34] SONG Y, JIANG J, MA J,et al.Enhanced transformation of sulfonamide antibiotics by manganese(Ⅳ) oxide in the presence of model humic constituents[J].Water Research, 2019, 153(APR.15):200-207.
    [35] GUO Q, ZHOU Y, PANG S Y,et al.Transformation and detoxification of sulfamethoxazole by permanganate (Mn(Ⅶ)) in the presence of phenolic humic constituents[J].Chemical Engineering Journal, 2020, 413:127534.DOI: 10.1016/j.cej.2020.127534.
    [36] ZHAO J,SUN Y,ZHANG Y,et al.Heterogeneous activation of persulfate by activated carbon supported iron for efficient amoxicillin degradation[J].Environmental Technology & Innovation, 2020, 21(8):101259.DOI: 10.1016/j.eti.2020.101259.
    [37] SUN X,FENG M,DONG S, et al. Removal of sulfachloropyridazine by ferrate(Ⅵ):kinetics, reaction pathways, biodegradation, and toxicity evaluation[J]. Chemical Engineering Journal,2019,372:742-751.
    [38] ACOSTA-RANGEL A, et al.Oxidation of sulfonamides by ferrate(Ⅵ):reaction kinetics, transformation byproducts and toxicity assesment[J].Journal of Environmental Management, 255:109927.DOI: 10.1016/j.jenvman.2019.109927.
    [39] YANG Y, LU X, JIANG J,et al.Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS):formation of oxidation products and effect of bicarbonate[J].Water Research, 2017, 118:196.DOI: 10.1016/j.watres.2017.03.054.
    [40] MAJEWSKY M, WAGNER D, DELAY M,et al.Antibacterial activity of sulfamethoxazole transformation products (TPs):general relevance for sulfonamide TPs modified at the para position[J].Chemical Research in Toxicology, 2014, 27(10):1821-1828.
    [41] RODRIGUEZ-CHUECA J, ROCHA S, GIUSTINA V D,et al. Assessment of full-scale tertiary wastewater treatment by UV-C based-AOPs:removal or persistence of antibiotics and antibiotic resistance genes?[J]. Science of the Total Environment,2018,652:1051-1061.
    [42] JI Z, SU C, ZHOU J,et al.Effects and mechanisms of ultraviolet, chlorination, and ozone disinfection on antibiotic resistance genes in secondary effluents of municipal wastewater treatment plants[J].Chemical Engineering Journal, 2017.DOI: 10.1016/j.cej.2017.02.076.
    [43] SHEN Y,CHU L, ZHUAN R,et al. Degradation of antibiotics and antibiotic resistance genes in fermentation residues by ionizing radiation:a new insight into a sustainable management of antibiotic fermentative residuals[J]. Journal of Environmental Management,2019,232:171-178.DOI: 10.1016/j.jenvman.2018.11.050.
    [44] CHU L, WANG J, HE S,et al.Treatment of pharmaceutical wastewater by ionizing radiation:removal of antibiotics, antimicrobial resistance genes and antimicrobial activity[J].Journal of Hazardous Materials, 2021(1):125724.DOI: 10.1016/j.jhazmat.2021.125724.
    [45] STARLING M C V M, de MENDONCA NETO R P, PIRES G F F, et al.Combat of antimicrobial resistance in municipal wastewater treatment plant effluent via solar advanced oxidation processes:achievements and perspectives[J].Science of the Total Environment, 2021,786:147448.DOI: 10.1016/j.scitotenv.2021.147448.
    [46] ZHANG G, LI W, CHEN S,et al.Problems of conventional disinfection and new sterilization methods for antibiotic resistance control[J].Chemosphere, 2020, 254:126831.DOI: 10.1016/j.chemosphere.2020.126831.
    [47] THAKALI O.Removal of antibiotic resistance genes at two conventional wastewater treatment plants of Louisiana, USA[J].Water, 2020, 12(6):1729.DOI: 10.3390/w12061729.
    [48] LIN X, RUAN J, HUANG L,et al. Comparison of the elimination effectiveness of tetracycline and AmpC beta-lactamase resistance genes in a municipal wastewater treatment plant using four parallel processes[J]. Ecotoxicology,2020,30(8):1586-1597.
  • 加载中
计量
  • 文章访问数:  296
  • HTML全文浏览量:  38
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-24
  • 网络出版日期:  2023-11-15

目录

    /

    返回文章
    返回