CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水热技术在污泥无害化处理中的应用及展望

陈仁杰 董滨 戴晓虎

陈仁杰, 董滨, 戴晓虎. 水热技术在污泥无害化处理中的应用及展望[J]. 环境工程, 2023, 41(9): 201-209. doi: 10.13205/j.hjgc.202309025
引用本文: 陈仁杰, 董滨, 戴晓虎. 水热技术在污泥无害化处理中的应用及展望[J]. 环境工程, 2023, 41(9): 201-209. doi: 10.13205/j.hjgc.202309025
CHEN Renjie, DONG Bin, DAI Xiaohu. OVERVIEW AND PROSPECT ON APPLICATION OF HYDROTHERMAL TREATMENT ON SEWAGE SLUDGE HARMLESSNESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 201-209. doi: 10.13205/j.hjgc.202309025
Citation: CHEN Renjie, DONG Bin, DAI Xiaohu. OVERVIEW AND PROSPECT ON APPLICATION OF HYDROTHERMAL TREATMENT ON SEWAGE SLUDGE HARMLESSNESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 201-209. doi: 10.13205/j.hjgc.202309025

水热技术在污泥无害化处理中的应用及展望

doi: 10.13205/j.hjgc.202309025
基金项目: 

国家重点研发计划项目(2020YFC1908702,2021YFC3200704);中国三峡集团有限公司项目(202003080)

详细信息
    作者简介:

    陈仁杰(1995-),男,博士研究生,主要从事污泥减量化、资源化和无害化处理研究。2010213@tongji.edu.cn

    通讯作者:

    董滨(1978-),男,博士,教授,主要研究方向为固废处理与资源化。dongbin@tongji.edu.cn

OVERVIEW AND PROSPECT ON APPLICATION OF HYDROTHERMAL TREATMENT ON SEWAGE SLUDGE HARMLESSNESS

  • 摘要: 水热技术(HT)作为一种环境友好型技术,在强化污泥脱水、回收污泥能源和营养物质方面被广泛应用,并已得到了系统总结。然而,目前仍缺乏水热技术在污泥无害化处理领域应用研究的系统梳理。首先,总结了水热处理对污泥中重金属固液相迁移及化学形态转化规律的影响,即水热处理显著降低了污泥固相产物中重金属的生物可利用性和浸出风险,而增加了液相产物和生物油中的重金属含量和生态风险。其次,总结了水热处理对致病菌与有毒有害有机污染物去除效果和降解机制,即水热处理可以有效去除污泥中抗生素及抗性基因、持久性有机污染物(POPs)、致病菌以及微塑料,但其中多氯联苯(PCBs)、多氟烷烃(PFAS)与微塑料(PE和PVC)的水热降解产物的生物毒性提高。最后,针对目前研究现状提出未来的研究方向,包括识别水热过程污泥中有机/无机组分对污染物迁移转化的影响机制,对有毒有害污染物水热降解中间/最终产物进行生态风险评价。
  • [1] 柴宝华,李文涛,亓伟,等. 我国市政污泥处理处置现状研究[J]. 新能源进展, 2023, 11(1):38-44.
    [2] LIU H, BASAR I A, NZIHOU A, et al. Hydrochar derived from municipal sludge through hydrothermal processing:a critical review on its formation, characterization, and valorization[J]. Water Research, 2021, 199:117186.
    [3] CAO Y, HE M J, DUTTA S, et al. Hydrothermal carbonization and liquefaction for sustainable production of hydrochar and aromatics[J]. Renewable and Sustainable Energy Reviews, 2021, 152:111722.
    [4] ZHANG X, LI X X, LI R, et al. Hydrothermal carbonization and liquefaction of sludge for harmless and resource purposes:a review[J]. Energy & Fuels, 2020, 34(11):13268-13290.
    [5] LIU Y, LIN R, REN J. Developing a life cycle composite footprint index for sustainability prioritization of sludge-to-energy alternatives[J]. Journal of Cleaner Production, 2021, 281:124885.
    [6] 路瑞娟,付杰,王晨晨,等. 城市污泥处理过程中重金属迁移转化特性研究进展[J]. 环境工程技术学报, 2023, 13(1):318-324.
    [7] LI L, XU Z R, ZHANG C L, et al. Quantitative evaluation of heavy metals in solid residues from sub- and super-critical water gasification of sewage sludge[J]. Bioresource Technology, 2012, 121:169-175.
    [8] YUAN X, HUANG H, ZENG G, et al. Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge[J]. Bioresource Technology, 2011, 102(5):4104-4110.
    [9] SHI W S, LIU C G, DING D H, et al. Immobilization of heavy metals in sewage sludge by using subcritical water technology[J]. Bioresource Technology, 2013, 137:18-24.
    [10] LENG L J, YUAN X Z, HUANG H J, et al. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge[J]. Bioresource Technology, 2014, 167:144-150.
    [11] LIU T T, LIU Z G, ZHENG Q F, et al. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis[J]. Bioresource Technology, 2018, 247:282-290.
    [12] ZHANG X Y, ZHOU J, XU Z J, et al. Characterization of heavy metals in textile sludge with hydrothermal carbonization treatment[J]. Journal of Hazardous Materials, 2021, 402:123635.
    [13] LU X L, MA X Q, QIN Z, et al. Investigation of aqueous phase recirculation on co-hydrothermal carbonization of sewage sludge and lignite:hydrochar properties and heavy metal chemical speciation[J]. Journal of Environmental Chemical Engineering, 2022, 10(1):107111.
    [14] HUANG R X, ZHANG B, SAAD E M, et al. Speciation evolution of zinc and copper during pyrolysis and hydrothermal carbonization treatments of sewage sludges[J]. Water Research, 2018, 132:260-269.
    [15] SHAO J G, YUAN X Z, LENG L J, et al. The comparison of the migration and transformation behavior of heavy metals during pyrolysis and liquefaction of municipal sewage sludge, paper mill sludge, and slaughterhouse sludge[J]. Bioresource Technology, 2015, 198:16-22.
    [16] YUE Y, YAO Y, LIN Q M, et al. The change of heavy metals fractions during hydrochar decomposition in soils amended with different municipal sewage sludge hydrochars[J]. Journal of Soils and Sediments, 2017, 17(3):763-770.
    [17] FEI Y H, ZHAO D, LIU Y, et al. Feasibility of sewage sludge derived hydrochars for agricultural application:nutrients (N, P, K) and potentially toxic elements (Zn, Cu, Pb, Ni, Cd)[J]. Chemosphere, 2019, 236:124841.
    [18] HUANG H J, YUAN X Z. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge[J]. Bioresource Technology, 2016, 200:991-998.
    [19] YUAN X Z, LENG L J, HUANG H J, et al. Speciation and environmental risk assessment of heavy metal in bio-oil from liquefaction/pyrolysis of sewage sludge[J]. Chemosphere, 2015, 120:645-652.
    [20] HUANG R X, TANG Y Z, LUO L. Thermochemistry of sulfur during pyrolysis and hydrothermal carbonization of sewage sludges[J]. Waste Management, 2021, 121:276-285.
    [21] ZHAI Y, LIU X, ZHU Y, et al. Hydrothermal carbonization of sewage sludge:the effect of feed-water pH on fate and risk of heavy metals in hydrochars[J]. Bioresource Technology, 2016, 218:183-188.
    [22] LI W H, SHI Y L, GAO L H, et al. Occurrence, distribution and potential affecting factors of antibiotics in sewage sludge of wastewater treatment plants in China[J]. Science of The Total Environment, 2013, 445/446:306-313.
    [23] ZHANG X Y, LI R Y. Variation of antibiotics in sludge pretreatment and anaerobic digestion processes:degradation and solid-liquid distribution[J]. Bioresource Technology, 2018, 255:266-272.
    [24] LI N, LIU H J, XUE Y G, et al. Partition and fate analysis of fluoroquinolones in sewage sludge during anaerobic digestion with thermal hydrolysis pretreatment[J]. Science of the Total Environment, 2017, 581/582:715-721.
    [25] SUN C X, LI W, CHEN Z, et al. Responses of antibiotics, antibiotic resistance genes, and mobile genetic elements in sewage sludge to thermal hydrolysis pre-treatment and various anaerobic digestion conditions[J]. Environment International, 2019, 133:105156.
    [26] LI H, JI H D, LIU J J, et al. Interfacial modulation of ZnIn2S4 with high active Zr-S4 sites for boosting photocatalytic activation of oxygen and degradation of emerging contaminant[J]. Applied Catalysis B:Environmental, 2023, 328:122481.
    [27] 汪鲁,贲伟伟,李彦刚,等. 污泥臭氧原位减量工艺中抗生素的去除[J]. 环境科学, 2018, 39(4):1739-1747.
    [28] WANG Y D, WANG Y Y, ZHANG Z, et al. Combined hydrothermal treatment, pyrolysis, and anaerobic digestion for removal of antibiotic resistance genes and energy recovery from antibiotic fermentation residues[J]. Bioresource Technology, 2021, 337:125413.
    [29] REN J J, DENG L J, LI C Y, et al. Safety of composts consisting of hydrothermally treated penicillin fermentation residue:degradation products, antibiotic resistance genes and bacterial diversity[J]. Environmental Pollution, 2021, 290:118075.
    [30] TONG J, FANG P, ZHANG J Y, et al. Microbial community evolution and fate of antibiotic resistance genes during sludge treatment in two full-scale anaerobic digestion plants with thermal hydrolysis pretreatment[J]. Bioresource Technology, 2019, 288:121575.
    [31] WANG Y D, ZHAO X M, WANG Y K, et al. Hydrothermal treatment enhances the removal of antibiotic resistance genes, dewatering, and biogas production in antibiotic fermentation residues[J]. Journal of Hazardous Materials, 2022, 435:128901.
    [32] CODINA-GARCÍA M, MILITÃO T, MORENO J, et al. Plastic debris in Mediterranean seabirds[J]. Marine Pollution Bulletin, 2013, 77(1/2):220-226.
    [33] WRIGHT S L, KELLY F J. Plastic and human health:a micro issue?[J]. Environmental Science & Technology, 2017, 51(12):6634-6647.
    [34] MURPHY F, EWINS C, CARBONNIER F, et al. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment[J]. Environmental Science & Technology, 2016, 50(11):5800-5808.
    [35] PEI J, YAO H, WANG H, et al. Comparison of ozone and thermal hydrolysis combined with anaerobic digestion for municipal and pharmaceutical waste sludge with tetracycline resistance genes[J]. Water Research, 2016, 99:122-128.
    [36] REDHEAD S, NIEUWLAND J, ESTEVES S, et al. Fate of antibiotic resistant E. coli and antibiotic resistance genes during full scale conventional and advanced anaerobic digestion of sewage sludge[J]. PLoS One, 2020, 15(12):e237283.
    [37] CAI C, HUI X S, YANG W, et al. Implications for mitigation of antibiotic resistance:differential response of intracellular and extracellular antibiotic resistance genes to sludge fermentation coupled with thermal hydrolysis[J]. Water Research, 2022, 209:117876.
    [38] 李小伟,纪艳艳,梅庆庆,等.污水处理厂污水和污泥中微塑料的研究展望[J]. 净水技术, 2019,38(7):13-22

    ,84.
    [39] MAHON A M, O CONNELL B, HEALY M G, et al. Microplastics in sewage sludge:effects of treatment[J]. Environmental Science & Technology, 2017, 51(2):810-818.
    [40] ZUBRIS K A V, RICHARDS B K. Synthetic fibers as an indicator of land application of sludge[J]. Environmental Pollution, 2005, 138(2):201-211.
    [41] LI X W, CHEN L B, MEI Q Q, et al. Microplastics in sewage sludge from the wastewater treatment plants in China[J]. Water Research, 2018, 142:75-85.
    [42] ZHANG Z Q, CHEN Y G. Effects of microplastics on wastewater and sewage sludge treatment and their removal:a review[J]. Chemical Engineering Journal, 2020, 382:122955.
    [43] GOJE A S,THAKUR S A, DIWARE V R, et al. Hydrolytic depolymerization of poly(Ethylene Terephthalate) waste at high temperature under autogenous pressure[J]. Polym-Plast Technol, 2004, 43(4):1093-1113.
    [44] XU Z J, BAI X. Microplastic degradation in sewage sludge by hydrothermal carbonization:efficiency and mechanisms[J]. Chemosphere, 2022, 297:134203.
    [45] JIANG C, CHEN Z, LU B, et al. Hydrothermal pretreatment reduced microplastics in sewage sludge as revealed by the combined micro-Fourier transform infrared (FTIR) and Raman imaging analysis[J]. Chemical Engineering Journal, 2022, 450:138163.
    [46] CHAND R, KOHANSAL K, TOOR S, et al. Microplastics degradation through hydrothermal liquefaction of wastewater treatment sludge[J]. Journal of Cleaner Production, 2022, 335:130383.
    [47] YU Y, DING Y D, ZHOU C L, et al. Aging of polylactic acid microplastics during hydrothermal treatment of sewage sludge and its effects on heavy metals adsorption[J]. Environmental Research, 2023, 216:114532.
    [48] JIANG C, NI B J, ZHENG X W, et al. The changes of microplastics' behavior in adsorption and anaerobic digestion of waste activated sludge induced by hydrothermal pretreatment[J]. Water Research, 2022, 221:118744.
    [49] 张伟军,张彧,潘思逸. 污泥处理过程中毒害有机污染物的迁移转化规律与毒性效应[J]. 安全与环境工程, 2022, 29(2):183-198.
    [50] XUE Y G, LIU H J, CHEN S S, et al. Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high solid sludge[J]. Chemical Engineering Journal, 2015, 264:174-180.
    [51] LANG Q Q, ZHANG B, LI Y, et al. Formation and toxicity of polycyclic aromatic hydrocarbons during CaO assisted hydrothermal carbonization of swine manure[J]. Waste Management, 2019, 100:84-90.
    [52] GONG M, WANG Y L, FAN Y J, et al. Polycyclic aromatic hydrocarbon formation during the gasification of sewage sludge in sub- and supercritical water:effect of reaction parameters and reaction pathways[J]. Waste Management, 2018, 72:287-295.
    [53] WANG C Y, ZHU W, GONG M, et al. Influence of H2O2 and Ni catalysts on hydrogen production and PAHs inhibition from the supercritical water gasification of dewatered sewage sludge[J]. The Journal of Supercritical Fluids, 2017, 130:183-188.
    [54] LIU T T, TIAN L F, LIU Z G, et al. Distribution and toxicity of polycyclic aromatic hydrocarbons during CaO-assisted hydrothermal carbonization of sewage sludge[J]. Waste Management, 2021, 120:616-625.
    [55] BROOKMAN H, GIEVERS F, ZELINSKI V, et al. Influence of hydrothermal carbonization on composition, formation and elimination of biphenyls, dioxins and furans in sewage sludge[J]. Energies, 2018, 11(6):1582.
    [56] ZHANG W L, LIANG Y N. Hydrothermal liquefaction of sewage sludge-effect of four reagents on relevant parameters related to biocrude and PFAS[J]. Journal of Environmental Chemical Engineering, 2022, 10(1):107092.
    [57] 比顿G. 环境病毒学导论[M]. 王小平,乔佩文,张润,译. 北京:中国环境科学出版社, 1986.
    [58] YANG W, CAI C, DAI X H. Interactions between virus surrogates and sewage sludge vary by viral analyte:recovery, persistence, and sorption[J]. Water Research, 2022, 210:117995.
    [59] 戴晓虎,李小伟,杨婉,等. 污水处理厂污泥中病毒的赋存特性及处理处置过程中暴露风险防控研究进展[J]. 给水排水, 2020, 56(3):60-73.
    [60] 杨勇, 魏源送, 郑祥, 等. 北京温榆河流域微生物污染调查研究[J]. 环境科学学报, 2012, 32(1):9-18.
    [61] CROCI L, CICCOZZI M, DE MEDICI D, et al. Inactivation of hepatitis a virus in heat-treated mussels[J]. Journal of Applied Microbiology, 1999, 87(6):884-888.
    [62] CHIN A W H, CHU J T S, PERERA M R A, et al. Stability of SARS-CoV-2 in different environmental conditions[J]. The Lancet Microbe, 2020, 1(1):e10.
    [63] ABRAHAM J P, PLOURDE B D, CHENG L. Using heat to kill SARS-CoV-2[J]. Reviews in Medical Virology, 2020, 30(5):e2115.
    [64] CZERWIŃSKA K, ŚLIZ M, WILK M. Hydrothermal carbonization process:fundamentals, main parameter characteristics and possible applications including an effective method of SARS-CoV-2 mitigation in sewage sludge. a review[J]. Renewable and Sustainable Energy Reviews, 2022, 154:111873.
  • 加载中
计量
  • 文章访问数:  146
  • HTML全文浏览量:  12
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-11
  • 网络出版日期:  2023-11-15

目录

    /

    返回文章
    返回