中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

循环经济背景下污水厂污泥中铝盐的分离与回收技术研究进展

樊瑜 华煜 杨东海 戴晓虎

樊瑜, 华煜, 杨东海, 戴晓虎. 循环经济背景下污水厂污泥中铝盐的分离与回收技术研究进展[J]. 环境工程, 2023, 41(9): 210-220. doi: 10.13205/j.hjgc.202309026
引用本文: 樊瑜, 华煜, 杨东海, 戴晓虎. 循环经济背景下污水厂污泥中铝盐的分离与回收技术研究进展[J]. 环境工程, 2023, 41(9): 210-220. doi: 10.13205/j.hjgc.202309026
FAN Yu, HUA Yu, YANG Donghai, DAI Xiaohu. RESEARCH PROGRESS ON SEPARATION AND RECOVERY OF ALUMINUM COAGULANTS FROM WASTEWATER SLUDGE IN THE CONTEXT OF CIRCULAR ECONOMY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 210-220. doi: 10.13205/j.hjgc.202309026
Citation: FAN Yu, HUA Yu, YANG Donghai, DAI Xiaohu. RESEARCH PROGRESS ON SEPARATION AND RECOVERY OF ALUMINUM COAGULANTS FROM WASTEWATER SLUDGE IN THE CONTEXT OF CIRCULAR ECONOMY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 210-220. doi: 10.13205/j.hjgc.202309026

循环经济背景下污水厂污泥中铝盐的分离与回收技术研究进展

doi: 10.13205/j.hjgc.202309026
基金项目: 

国家自然科学基金(52131002,52200172);上海市科学技术委员会项目(22DZ1209200,21YF1412200)

详细信息
    作者简介:

    樊瑜(1998-),女,硕士,主要研究方向为污泥预处理与组分分离的工艺与技术理论研究。gsfanyu@163.com

    通讯作者:

    华煜(1995-),男,博士后,主要研究方向为难水解有机固废资源化基础理论与技术应用研究。1351530@tongji.edu.cn

    戴晓虎(1962-),男,教授,主要研究方向为城镇有机固体废弃物处理处置的技术开发与应用。daixiaohu@tongji.edu.cn

RESEARCH PROGRESS ON SEPARATION AND RECOVERY OF ALUMINUM COAGULANTS FROM WASTEWATER SLUDGE IN THE CONTEXT OF CIRCULAR ECONOMY

  • 摘要: 污泥资源化是我国解决资源与环境问题、实现减污降碳的重要举措。污泥中铝盐组分的回收和循环利用是推动污水处理厂绿色发展的有效措施,也是同步提高污泥中磷、有机质等资源高效回收的重要途径。综述了铝系混凝剂在污水污泥中的物质流向和反应机制;基于污泥中铝盐的赋存形态分析,以铝盐释放-分离-回用的技术路线为核心,全面回顾了污泥中铝盐回收的相关技术与研究现状,探讨了其对磷回收的影响。重点分析了铝盐的多种分离技术,以克服污泥中磷、重金属在酸性条件下共溶的障碍,包括顺序沉淀、离子交换树脂、液液萃取、硫化物沉淀、Donnan膜以及电渗析工艺。提出了铝盐与磷的联合回收工艺,针对污泥中铝盐回收现状及问题,展望了铝盐回收效率进一步提高、全链条经济效益及铝盐混凝剂循环利用综合评估等热点研究方向,旨在推动构建资源化水平更高、更符合循环经济模式的污水及污泥处理系统。
  • [1] PETZET S, PEPLINSKI B, CORNEL P. On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both[J]. Water Research, 2012, 46(12):3769-3780.
    [2] GUO J M, ZHOU Z, MING Q, et al. Recovering precipitates from dechlorination process of saline wastewater as poly aluminum chloride[J]. Chemical Engineering Journal, 2022, 427:131612.
    [3] MACHADO G, dos SANTOS C A, GOMES J, et al. Chemical modification of tannins from Acacia mearnsii to produce formaldehyde free flocculant[J]. Science of the Total Environment, 2020, 745:140875.
    [4] 樊瑜. 基于组分分离的污泥提质减量及资源化的技术研究[D]. 北京:清华大学, 2021.
    [5] PING Q, ZHANG J Y, TANG R, et al. Effect of surfactants on phosphorus release and acidogenic fermentation of waste activated sludge containing different aluminium phosphate forms[J]. Chemosphere, 2022, 287:132213.
    [6] ZHANG P F, ZHOU Y, PAN X L, et al. Enhanced acidogenic fermentation from Al-rich waste activated sludge by combining lysozyme and sodium citrate pretreatment:perspectives of Al stabilization and enzyme activity[J]. Science of the Total Environment, 2023, 864:161108.
    [7] OWODUNNI A A, ISMAIL S, KURNIAWAN S B, et al. A review on revolutionary technique for phosphate removal in wastewater using green coagulant[J]. Journal of Water Process Engineering, 2023, 52:103573.
    [8] TOOR U A, SHIN H, KIM D J. Mechanistic insights into nature of complexation between aluminum and phosphates in polyaluminum chloride treated sludge for sustainable phosphorus recovery[J]. Journal of Industrial and Engineering Chemistry, 2019, 71:425-434.
    [9] WEI H, GAO B Q, REN J, et al. Coagulation/flocculation in dewatering of sludge:a review[J]. Water Research, 2018, 143:608-631.
    [10] CHEN B H, LEE S J, LEE D. Rheological characteristics of the cationic polyelectrolyte flocculated wastewater sludge[J]. Water Research, 2005, 39(18):4429-4435.
    [11] LU G J, QU J H, TANG H X. The electrochemical production of highly effective polyaluminum chloride[J]. Water Research, 1999, 33(3):807-813.
    [12] CAO B D, ZHANG W J, WANG Q D, et al. Wastewater sludge dewaterability enhancement using hydroxyl aluminum conditioning:role of aluminum speciation[J]. Water Research, 2016, 105:615-624.
    [13] 陆柱蔡, 陈中兴, 黄光团. 水处理药剂[M]. 北京:化学工业版社, 2002.
    [14] RAYNAUD M, VAXELAIRE J, OLIVIER J, et al. Compression dewatering of municipal activated sludge:effects of salt and pH[J]. Water Research, 2012, 46(14):4448-4456.
    [15] VERRELLI D I, DIXON D R, SCALES P J. Effect of coagulation conditions on the dewatering properties of sludges produced in drinking water treatment[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2009, 348(1/2/3):14-23.
    [16] JIANG J Q. The role of coagulation in water treatment[J]. Current Opinion in Chemical Engineering, 2015, 8:36-44.
    [17] WU B R, Ni B J, HORVAT K, et al. Occurrence state and molecular structure analysis of extracellular proteins with implications on the dewaterability of waste-activated sludge[J]. Environmental Science & Technology, 2017, 51(16):9235-9243.
    [18] WU B R, SU L H, DAI X H, et al. Development of sludge-derived mesoporous material with loaded nano CaO2 and doped Fe for re-utilization of dewatered waste-activated sludge as dewatering aids[J]. Chemical Engineering Journal, 2018, 335:161-168.
    [19] ZOU J T, ZHANG L L, WANG L, et al. Enhancing phosphorus release from waste activated sludge containing ferric or aluminum phosphates by EDTA addition during anaerobic fermentation process[J]. Chemosphere, 2017, 171:601-608.
    [20] GALARNEAU E, GEHR R. Phosphorus removal from wastewaters:experimental and theoretical support for alternative mechanisms[J]. Water Research, 1997, 31(2):328-338.
    [21] OMOIKE A. Removal of phosphorus and organic matter removal by alum during wastewater treatment[J]. Water Research, 1999, 33(17):3617-3627.
    [22] HSU P H. Precipitation of phosphate from solution using aluminum salt[J]. Water Research, 1975, 9(12):1155-1161.
    [23] 周长波. PAC-生物联合絮凝除磷效能及机理分析[D]. 武汉:华中科技大学, 2013.
    [24] JIMÉNEZ B, MARTÍNEZ M, VACA M. Alum recovery and wastewater sludge stabilization with sulfuric acid[J]. Water Science and Technology, 2007, 56(8):133-141.
    [25] LI C W, LIN J L, KANG S F, et al. Acidification and alkalization of textile chemical sludge:volume/solid reduction, dewaterability, and Al(Ⅲ) recovery[J]. Separation and Purification Technology, 2005, 42(1):31-37.
    [26] CHAKRABORTY T, GABRIEL M, AMIRI A S, et al. Carbon and phosphorus removal from primary municipal wastewater using recovered aluminum[J]. Environmental Science & Technology, 2017, 51(21):12302-12309.
    [27] WANG X Y, SHI C, HAO X D, et al. Synergy of phosphate recovery from sludge-incinerated ash and coagulant production by desalinated brine[J]. Water Research, 2023, 231:119658.
    [28] MONEA M C, LöHR D K, MEYER C, et al. Comparing the leaching behavior of phosphorus, aluminum and iron from post-precipitated tertiary sludge and anaerobically digested sewage sludge aiming at phosphorus recovery[J]. Journal of Cleaner Production, 2020, 247:119129.
    [29] TAKAHASHI M, KATO S, SHIMA H, et al. Technology for recovering phosphorus from incinerated wastewater treatment sludge[J]. Chemosphere, 2001, 44(1):23-29.
    [30] PETZET S, PEPLINSKI B, BODKHE S, et al. Recovery of phosphorus and aluminium from sewage sludge ash by a new wet chemical elution process (SESAL-Phos-recovery process)[J]. Water Science and Technology, 2011, 64(3):693-699.
    [31] PETRUZZELLI D, LIMONI N, TIRAVANTI G, et al. Aluminum recovery from water clarifier sludges by ion exchange:comparison of strong and weak electrolyte cation resins performances[J]. Reactive and Functional Polymers, 1998, 38(2/3):227-236.
    [32] PETRUZZELLI D, VOLPE A, LIMONI N, et al. Coagulants removal and recovery from water clarifier sludge[J]. Water Research, 2000, 34(7):2177-2182.
    [33] DING Y Y, DAI X H, WU B R, et al. Targeted clean extraction of phosphorus from waste activated sludge:from a new perspective of phosphorus occurrence states to an innovative approach through acidic cation exchange resin[J]. Water Research, 2022, 215:118190.
    [34] DING Y Y, WU B R, XU Y, et al. Enhancing phosphorus recovery from efficient acidogenic fermentation of waste activated sludge with acidic cation exchange resin pretreatment:insights from occurrence states and transformation[J]. Science of the Total Environment, 2022, 848:157534.
    [35] WESTERHOFF G P, CORNWELL D A. A new approach to alum recovery[J]. Journal-American Water Works Association, 1978, 70(12):709-714.
    [36] 徐占宇,李婷婷,张文斌,等.用P204从盐酸体系中萃取铝试验研究[J].湿法冶金, 2021,40(1):26-29.
    [37] CORNWELL D A, LEMUNYON R M. Feasibility studies on liquid ion exchange for alum recovery from water treatment plant sludges[J]. Journal-American Water Works Association, 1980, 72(1):64-68.
    [38] CORNWELL D A, CLINE G C, PRZYBYLA J M, et al. Demonstration testing of alum recovery by liquid ion exchange[J]. Journal-American Water Works Association, 1981, 73(6):326-332.
    [39] 徐美燕, 马燕, 孙贤波, 等. 萃取法回收水厂污泥中铝的技术研究Ⅰ. 清液萃取法[J]. 华东理工大学学报(自然科学版), 2007, 33(3):369-374,418.
    [40] 于博, 凌江华, 贾富智, 等. 溶剂萃取法分离回收废催化剂碱浸渣中铝,镍的研究[J]. 石油化工高等学校学报,2023,36(2):20-26.
    [41] 李伟鑫, 张荣荣, 刘勇奇, 等. 用Cyanex272从硫酸盐体系中萃取除铝[J]. 湿法冶金,2021,40(2):159-162.
    [42] 李剑虹, 张兴. 环烷酸改性合成氯代环烷酸萃取体系分离稀土和铝的红外光谱分析[J]. 有色金属, 2011, 63(2):305-307

    ,310.
    [43] 李德谦, 刘大春. 伯胺N_(1923)从硫酸溶液中萃取铝_(Ⅲ)的机理[J]. 有色金属(冶炼部分), 1988, (3):29-31.
    [44] MAHECHA-RIVAS J C, FUENTES-ORDOÑEZ E, EPELDE E, et al. Aluminum extraction from a metallurgical industry sludge and its application as adsorbent[J]. Journal of Cleaner Production, 2021, 310:127374.
    [45] KEELEY J, JARVIS P, JUDD S J. Coagulant recovery from water treatment residuals:a review of applicable technologies[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(24):2675-2719.
    [46] van TRUONG T, TIWARI D, MOK Y S, et al. Recovery of aluminum from water treatment sludge for phosphorus removal by combined calcination and extraction[J]. Journal of Industrial and Engineering Chemistry, 2021, 103:195-204.
    [47] FRANZ M. Phosphate fertilizer from sewage sludge ash (SSA)[J]. Waste Management, 2008, 28(10):1809-1818.
    [48] TOKUDA H, KUCHAR D, MIHARA N, et al. Study on reaction kinetics and selective precipitation of Cu, Zn, Ni and Sn with H2S in single-metal and multi-metal systems[J]. Chemosphere, 2008, 73(9):1448-1452.
    [49] PRAKASH P, SENGUPTA A K. Selective coagulant recovery from water treatment plant residuals using Donnan membrane process[J]. Environmental Science & Technology, 2003, 37(19):4468-4474.
    [50] PRAKASH P, HOSKINS D, SENGUPTA A K. Application of homogeneous and heterogeneous cation-exchange membranes in coagulant recovery from water treatment plant residuals using Donnan membrane process[J]. Journal of Membrane Science, 2004, 237(1/2):131-144.
    [51] XU J, FU D, LU S G. The recovery of sulphuric acid from the waste anodic aluminum oxidation solution by diffusion dialysis[J]. Separation and Purification Technology, 2009, 69(2):168-173.
    [52] TRIFI I M, TRIFI B, BEN AYED S, et al. Removal of phosphate by Donnan dialysis coupled with adsorption onto calcium alginate beads[J]. Water Science and Technology, 2019, 80(1):117-125.
    [53] SHASHVATT U, AMURRIO F, BLANEY L. Ligand-enabled Donnan dialysis for phosphorus recovery from alum-laden waste activated sludge[J]. Environmental Science & Technology, 2022, 56(19):13945-13953.
    [54] JUVE J M A, CHRISTENSEN F M S, WANG Y, et al. Electrodialysis for metal removal and recovery:a review[J]. Chemical Engineering Journal, 2022, 435:134857.
    [55] YAN J Y, WANG H Y, YAN H Y, et al. Ion transmembrane behaviors in selective electrodialysis for acid recovery:impact of ion categories[J]. Desalination, 2023, 554:116513.
    [56] OTTOSEN L M, JENSEN P E, KIRKELUND G M. Electrodialytic separation of phosphorus and heavy metals from two types of sewage sludge ash[J]. Separation Science and Technology, 2014, 49(12):1910-1920.
    [57] FAN Y, WANG X, XU T, et al. A novel sludge acidification combined multistage elutriation (AME) pretreatment strategy for sludge dewaterability improvement, inorganic components separation and heavy metals removal[J]. Resources, Conservation and Recycling, 2022, 185:106498.
  • 加载中
计量
  • 文章访问数:  176
  • HTML全文浏览量:  19
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-23
  • 网络出版日期:  2023-11-15

目录

    /

    返回文章
    返回