A HIGH ORBIT HIGH SPATIOTEMPORAL RESOLUTION ATMOSPHERIC CARBON DIOXIDE MONITOR
-
摘要: 与世界经济快速增长相伴的碳排放量增加导致了全球气候变暖加剧,已引起国际社会高度关注,减排的呼声高涨。卫星遥感具有宏观、快速、定量、准确等特点,是碳监测最可行、最有效的技术支撑手段之一。为解决现有低轨大气CO2遥感探测中存在的时间分辨率低的问题,提出了一种地球静止轨道大气CO2柱浓度探测的时空联合调制空间外差干涉成像光谱技术。基于该技术研制了高轨高时空分辨大气二氧化碳监测仪原理样机,具有O2-A 0.76μm、CO2弱吸收1.57μm和CO2强吸收2.05μm 3个探测通道,空间分辨率优于3 km@36000 km,可实现CO2探测精度优于2×10-6,覆盖中国区域时间分辨率优于3.5 h的探测能力。基于原理样机开展了外场试验以及航飞试验,有效反演了不同目标区域的CO2浓度信息,验证了高轨高时空分辨大气CO2监测仪的技术可行性,为下一代碳监测载荷研制和数据应用提供技术基础。
-
关键词:
- 二氧化碳 /
- 卫星遥感 /
- 地球静止轨道 /
- 空间外差干涉成像光谱技术 /
- 时空联合调制
Abstract: The increase in carbon emissions accompanying the rapid growth of the world economy has led to global warming, which has aroused a high degree of concern in the international community and a soaring call for emissions reduction. Satellite remote sensing, with its macro, rapid, quantitative and accurate characteristics, is one of the most feasible and effective technical support for carbon monitoring. In order to solve the problem of low temporal resolution in the existing low-orbit atmospheric CO2 remote sensing detection, a Spatio-Temporal combined modulation spatial heterodyne Interferometric Imaging Spectroscopy technique (STIIS) for atmospheric CO2 column concentration detection in geostationary orbit is proposed. Based on STIIS, a high-orbit, high temporal and spatial resolution atmospheric CO2 monitor prototype has been developed, with O2-A 0.76 μm, CO2 weak absorption 1.57 μm and CO2 strong absorption 2.05 μm detection channels, and a spatial resolution of better than 3 km@36,000 km. The principle prototype can achieve CO2 detection accuracy better than 2×10-6 and time resolution better than 3.5 h covering China. Based on the principle prototype, the field test and flight test have been carried out, effectively inverting the CO2 concentration information of different target areas, verifying the technical feasibility of the high orbit high spatiotemporal resolution atmospheric carbon dioxide monitor, and providing a technical basis for the development and data application of the next-generation carbon monitoring payload. -
[1] BRUHWILER L, BASU S, BUTLER J H, et al.Observations of greenhouse gases as climate indicators[J].Climatic Change, 2021, 165(1/2).DOI: 10.1007/S10584-021-03001-7. [2] GAUTAM Y K, SHARMA K, TYAGI S, et al.Nanostructured metal oxide semiconductor-based sensors for greenhouse gas detection:progress and challenges[J].Royal Society Open Science, 2021, 8(3).DOI: 10.1098/RSOS.201324. [3] WMO.WMO GREENHOUSE GAS BULLETIN The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2021[R].Geneva:World Meteorological Organization, 2022. [4] IPCC.Global Warming of 1.5℃[R].Geneva:IPCC, 2018. [5] NAKAJIMA M, SUTO H, YOTSUMOTO K, et al.Fourier transform spectrometer on GOSAT and GOSAT-2, La Caleta, Tenerife, Canary Islands, Spain, 2017[C]//SPIE, 2017.DOI: 10.1117/12.2304062. [6] ELDERING A, BOLAND S, SOLISH B, et al.High precision atmospheric CO2 measurements from space:the design and implementation of OCO-2, 2012[C]//IEEE, 2012. [7] ELDERING A, TAYLOR T E, O'DELL C W, PAVLICK R.The OCO-3 mission:measurement objectives and expected performance based on 1 year of simulated data[J].Atmospheric Measurement Techniques, 2019, 12(4):2341-2370. [8] 杨忠东, 毕研盟, 王倩, 等.即将入轨的我国首颗测量大气二氧化碳的专用高光谱卫星[J].国际太空, 2016(12):13-17. [9] 韩美玲, 李碧岑.我国走向"碳索"新征程实现全球温室气体排放监测:解读我国首台干涉型高光谱温室气体遥感器[J].国际太空, 2017(12):16-17. [10] 熊伟.星载超光谱大气主要温室气体监测仪载荷[J].航天返回与遥感, 2018, 39(3):14-24. [11] SHI H L, LI Z W, YE H H, et al.First level 1 product results of the greenhouse gas monitoring instrument on the GaoFen-5 satellite[J].IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(2):899-914. [12] 熊伟."高分五号"卫星大气主要温室气体监测仪(特邀)[J].红外与激光工程, 2019, 48(3):24-30. [13] 熊伟.高分五号卫星大气主要温室气体监测仪优化设计及数据分析[J].上海航天, 2019(增刊2):168-173. [14] ZHANG X Y, WANG F, WANG W H, et al.The development and application of satellite remote sensing for atmospheric compositions in China[J].Atmospheric Research, 2020, 245:105056. [15] POLONSKY I N, O'BRIEN D M, KUMER J B, et al.Performance of a geostationary mission, geoCARB, to measure CO2, CH4 and CO column-averaged concentrations[J].Atmospheric Measurement Techniques, 2014, 7(4):959-981. [16] 汪钱盛, 罗海燕, 李志伟, 等.温室气体星载被动遥感探测载荷研究进展[J].遥感学报, 2023, 27(4):857-870. [17] 李志伟, 施海亮, 罗海燕, 等.超光谱空间干涉数据切趾函数与信噪比关系研究[J].光谱学与光谱分析, 2020, 40(1):29-33. [18] 罗海燕, 熊伟, 施海亮, 等.空间外差干涉光谱仪信噪比研究[J].光学学报, 2017, 37(6):110-116. [19] 丁毅, 罗海燕, 李志伟, 等.时空联合调制型空间外差干涉成像仪运动误差评估与校正[J].光学学报, 2022, 42(5):119-128. [20] 王维佳, 罗海燕, 李志伟, 等.中高层O2A带夜气辉时空分布特征[J].光学学报, 2021, 41(12):9-18. [21] 施海亮, 熊伟, 李志伟, 等.大气主要温室气体监测仪在轨观测数据质量分析[J].上海航天, 2019(增刊2):162-167. [22] LUO H Y, LI Z W, WU Y, et al.Greenhouse gases monitoring instrument on GaoFen-5 Satellite-Ⅱ:optical design and evaluation[J].Remote Sensing, 2023, 15(4). [23] LUO H Y, FANG X, XIONG W, et al.Optical design and simulation of spatial heterodyne spectroscopy (SHS) for mesospheric temperature[M]//Cham:Springer International Publishing, 2018:1-10. [24] 罗海燕, 李双, 施海亮, 等.空间外差光谱仪成像光学系统设计[J].红外与激光工程, 2016, 45(8):818001-818005. [25] 李志伟, 熊伟, 施海亮, 等.空间外差光谱仪实验室定标技术研究[J].光学学报, 2014, 34(4):283-289. [26] 施海亮, 李志伟, 罗海燕, 等.超光谱大气CO2监测仪光谱定标误差修正[J].光谱学与光谱分析, 2016, 36(7):2296-2299. [27] LI Z W, LUO H Y, SHI H L, et al.Research on laboratory spectral calibration method of two-dimensional spatial heterodyne spectrometer[J].Sixth Symposium on Novel Optoelectronic Detection Technology and Applications, 2020, 1145589. [28] 丁毅, 罗海燕, 施海亮, 等.一种新型的空间外差光谱仪平场校正方法[J].光学学报, 2020, 40(19):200-208. [29] DING Y, LUO H Y, SHI H L, et al.Correction of invalid data based on spatial dimension information of a temporally and spatially modulated spatial heterodyne interference imaging spectrometer[J].Applied Optics, 2021, 60(22):6614-6622. [30] WANG Q, LUO H Y, LI Z W, et al.Greenhouse gases monitoring instrument on a GF-5 satellite-Ⅱ:correction of spatial and frequency-dependent phase distortion[J].Optics Express, 2023, 31(2):3028-3045. [31] 丁毅, 罗海燕, 施海亮, 等.时空联合调制空间外差干涉成像仪自适应条纹模板研究[J].光学学报, 2022, 42(1):273-283. [32] SHI H L, LI Z W, YE H, et al.Calibration of the greenhouse gas monitoring instrument (GMI) based on a digital calibration field network[J].Remote Sensing, 2023, 15(2). [33] SHI H L, XIONG W, YE H, et al.High resolution fourier transform spectrometer for ground-based verification of greenhouse gases satellites[J].Remote Sensing, 2023, 15(6).
点击查看大图
计量
- 文章访问数: 149
- HTML全文浏览量: 28
- PDF下载量: 8
- 被引次数: 0