RESEARCH ON LASER HETERODYNE SPECTRUM TELEMETRY TECHNOLOGY BASED ON LOCAL OSCILLATOR LASER INTENSITY MODULATION
-
摘要: 针对当前用于大气温室气体柱浓度/廓线探测的信号光强度调制激光外差探测方法存在的信光损失,与本振激光波长调制激光外差探测方法存在的光谱反演模型复杂这两个问题,提出了基于本振激光强度调制的激光外差探测方法。对此,结合平衡探测技术,搭建了1套以1.571μm窄线宽半导体激光器作为本振光源的双通道平衡外差光谱探测系统,开展系统性能分析以及大气CO2柱总量测量研究。区别于已有文献报道的激光外差光谱探测方法,系统采用光开关对本振激光进行强度调制,利用平衡探测技术消除本振激光强度背景噪声的影响。结果表明,相比传统的信号光强度调制激光外差探测方法,该方法能够将外差信号信噪比提高3.7倍,对应的CO2柱总量测量精度提升3.36倍。以上研究表明,基于本振激光强度调制的激光外差探测方法能够有效的提高激光外差光谱探测系统性能。Abstract: Aiming at the problems of signal light intensity modulated laser heterodyne detection method used to detect the concentration/profile of atmospheric greenhouse gas column at present, such as signal light loss and complex spectral inversion model of local oscillator laser wavelength modulated laser heterodyne detection method, a laser heterodyne detection method based on local oscillator laser intensity modulation was proposed. In view of this, a dual-channel balanced heterodyne spectrum detection system with a 1.571 μm narrow linewidth semiconductor laser as a local oscillator light source was built by combining the balanced detection technology, and the system performance analysis and the measurement of atmospheric CO2 column abundance was carried out. Different from the laser heterodyne spectrum detection method reported in the current literature, the system used an optical switch to modulate the intensity of the local oscillator laser, and used balanced detection technology to eliminate the influence of background noise of local oscillator laser intensity. The results showed that compared with the traditional laser heterodyne detection method with signal light intensity modulation, this method can improve the signal-to-noise ratio of heterodyne signal by 3.7 times, and the corresponding measurement accuracy of CO2 column abundance was improved by 3.36 times. The above research shows that the laser heterodyne detection method based on local oscillator laser intensity modulation can effectively improve the performance of the laser heterodyne spectrum detection system.
-
[1] PROTOPOPOV V V.Laser Heterodyning[M].Springer, 2009. [2] 谈图, 曹振松, 王贵师, 等.4.4μm中红外激光外差光谱探测技术研究[J].光谱学与光谱分析, 2015, 35(6):1516-1519. [3] 邓昊.基于激光外差光谱技术的主要温室气体柱浓度测量方法研究[D].合肥:中国科学技术大学, 2020. [4] 王晶晶.大气温室气体近红外激光外差光谱遥感探测技术及应用研究[D].合肥:中国科学技术大学, 2021. [5] PARVITTE B, ZÉNINARI V, THIÉBEAUX C, et al.Infrared laser heterodyne systems[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2004, 60(5):1193-1213. [6] WEIDMANN D, TSAI T, MACLEOD N A, et al.Atmospheric observations of multiple molecular species using ultra-high-resolution external cavity quantum cascade laser heterodyne radiometry[J].Optics letters, 2011, 36(11):1951-1953. [7] DENG H, YANG C, XU Z, et al.Development of a laser heterodyne spectroradiometer for high-resolution measurements of CO2, CH4, H2O and O2 in the atmospheric column[J].Optics Express, 2021, 29(2):2003-2013. [8] DENG H, LI R, LIU H, et al.Optical amplification enables a huge sensitivity improvement to laser heterodyne radiometers for high-resolution measurements of atmospheric gases[J].Optics Letters, 2022, 47(17):4335-4338. [9] WANG J, SUN C, WANG G, et al.A fibered near-infrared laser heterodyne radiometer for simultaneous remote sensing of atmospheric CO2 and CH4[J].Optics and Lasers in Engineering, 2020, 129:106083. [10] SHEN F, WANG G, XUE Z, et al.Impact of lock-in time constant on remote monitoring of trace gas in the atmospheric column using laser heterodyne radiometer (LHR)[J].Remote Sensing, 2022, 14(12):2923. [11] 邓昊, 杨晨光, 管林强, 等.近红外外差光谱温室气体柱浓度的探测方法[J].Chinese Journal of Lasers, 2019, 46(3):0311001. [12] 薛正跃, 李竣, 刘笑海, 等.基于激光外差探测的大气N2O吸收光谱测量与廓线反演[J].物理学报, 2021, 70(21):309-317. [13] 王晶晶, 谈图, 王贵师, 等.全光纤双通道大气温室气体激光外差光谱探测技术研究[J].光谱学与光谱分析, 2021, 41(2):354-359. [14] XUE Z, SHEN F, LI J, et al.MEMS modulator-based mid-infrared laser heterodyne radiometer for atmospheric remote sensing[J].Frontiers in Physics, 2022, 10:945995. [15] XUE Z, SHEN F, LI J, et al.A MEMS modulator-based dual-channel mid-infrared laser heterodyne radiometer for simultaneous remote sensing of atmospheric CH4, H2O and N2O[J].Optics Express, 2022, 30(18):31828-31839. [16] WILSON E L, DIGREGORIO A, RIOT V J, et al.A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing CubeSat[J].Measurement Science and Technology, 2017, 28(3):035902. [17] MARTÍN-MATEOS P, BONILLA-MANRIQUE O E, GUTIÉRREZ-ESCOBERO C.Wavelength modulation laser heterodyne radiometry[J].Optics letters, 2018, 43(12):3009-3012. [18] MARTÍN-MATEOS P, GENNER A, MOSER H, et al.Thermal Infrared Laser Heterodyne Radiometer based on a Wavelength Modulated External Cavity Quantum Cascade Laser;proceedings of the Optics and Photonics for Sensing the Environment[C]//F, 2019, Optica Publishing Group. [19] MARTÍN-MATEOS P, GENNER A, MOSER H, et al.Implementation and characterization of a thermal infrared laser heterodyne radiometer based on a wavelength modulated local oscillator laser[J].Optics express, 2019, 27(11):15575-15584. [20] DENG H, LI M, HE Y, et al.Laser heterodyne spectroradiometer assisted by self-calibrated wavelength modulation spectroscopy for atmospheric CO2 column absorption measurements[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 230:118071. [21] 庞亚军, 高龙, 王春晖.2μm双平衡式外差探测IQ解调与信噪比研究[J].Chinese Journal of Lasers, 2012, 39(1):114001-114001. [22] 李玉.基于平衡探测器的光外差探测系统研究[D].长沙:国防科技大学, 2015. [23] 苑泽.ROF链路中平衡探测降低RIN噪声的研究[D].成都:电子科技大学, 2017.
点击查看大图
计量
- 文章访问数: 62
- HTML全文浏览量: 4
- PDF下载量: 4
- 被引次数: 0