DEVELOPMENT AND APPLICATION OF STABLE GASEOUS ISOTOPE ANALYSIS TECHNIQUE IN ATMOSPHERIC ENVIRONMENT MONITORING
-
摘要: 在大气环境监测中,利用稳定气态同位素的测量方法可用于评估大气污染情况,预防和控制大气污染。同时,在碳达峰和碳中和的任务背景下,稳定气态同位素测量技术的应用有助于进一步了解和监测含碳气体的排放和吸收过程,其数据有助于支撑减排政策的制定与优化,从而促进碳减排工作的实施。同位素的分析离不开分析方法与定值技术。总结了稳定气态同位素在质谱技术、气相色谱技术、光谱技术特别是傅里叶变换红外光谱(FTIR)技术以及结合数学模型分析方法等方面的科研进展,总结了3种分析技术的优缺点及在稳定气态同位素方面应用的适用性,为完善碳源碳汇体系和化学分析研究提供支持。Abstract: In atmospheric environment monitoring, the measurement of stable gaseous isotopes can be used to evaluate atmospheric pollution with the benefit of prevention and control. In the context of achieving carbon peaking and carbon neutrality goals, the application of stable gaseous isotope measurement technology can help monitor the emission and absorption process of greenhouse gas, and its data can also help to support the development and optimization of emission reduction policies, thereby the promotion on the implementation of carbon reduction efforts can be achieved. The analytical methods with value assignment technique are the key factors to the analysis of isotopes, by focusing on this subject, the research progress of stable gaseous isotopes is summarized, which contains three instrumental techniques:mass spectrometry, gas chromatography, and spectroscopy (especially FTIR), and the relating mathematical model is also introduced. Additionally, the advantages and disadvantages of the three techniques with their applicability for the analysis of stable gaseous isotopes are described, which can provide positive support for studying carbon source & sink and chemical analysis.
-
Key words:
- stable gaseous isotope /
- mass spectrometry /
- FTIR /
- gas chromatography /
- mathematical model /
- carbon source and sink
-
[1] FLEMING N.How I turn greenhouse gas from landfill sites into carbon-neutral fuel[J/OL].Nature.doi:10.1038/d41586-023-00108-y (2023). [2] 赵志东, 孟娇, 巩京慧, 等.稳定性同位素质谱技术在微量物证检验中的应用研究进展[J].理化检验(化学分册), 2020, 56(11):1235-1244. [3] COLE D R, CHAKRABORTY S.Rates and mechanisms of isotopic exchange[J].Rev Mineral Geochem, 2001, 43:83-223. [4] CALVIN A, EIERMAN S, PENG Z, et al.Single molecule infrared spectroscopy in the gas phase[J/OL].Nature.doi: 10.1038/s41586-023-06351-7(2023). [5] VALKIERS S, VARLAM M, RUßE K, et al.Preparation of synthetic isotope mixtures for the calibration of carbon and oxygen isotope ratio measurements (in carbon dioxide) to the SI[J].International Journal of Mass Spectrometry, 264(1):10-21. [6] KOZMIN YU P, MANOILOV A V, SEREBRYAKOVA M V, et al.A direct introduction of-18O isotopes into peptides and proteins for quantitative mass spectroscopy analysis[J].Russian Journal of Bioorganic Chemistry, 2011, 37(6):719-731. [7] MAUS A D, KEMP J V, HOFFMANN T J, et al.Isotopic distribution calibration for mass spectrometry[J].Anal Chem, 2021, 93(37):12532-12540. [8] MINORU MURANAKA, KAZUYA SASAKI, AKIHIRO SUZUKI, et al.Oxygen pathway in Ag cathode using oxygen isotope exchange and secondary ion mass spectroscopy[C]//Solid Oxide Fuel Cells 11(SOFC-XI).p3.:The Electrochemical Society, 2009:2667-2674. [9] JACOBS A, ANDREOIU C, BERGMANN J, et al.Improved high-precision mass measurements of mid-shell neon isotopes[J].Nuclear Physics, 2023, 1033, 122636. [10] OLSEN J, HEINEMEIER J, BAHNER K, et al.Integrating continuous-flow mass spectrometry and automatic CO2 collection for AMS[J].Radiocarbon, 2007, 49(2):233-244. [11] RÖCKMANN T, BRENNINKMEIJER C A M.The error in conventionally reported13C/12C ratios of atmospheric CO due to the presence of mass independent oxygen isotope enrichment[J].Geophysical Research Letters, 1998, 25(16):3163-3166. [12] HUT G, BEGEMANN M J S, WEERKAMP H R.Determination of isotope ratios in the natural gas components CH4 and N2 separated by gas chromatography[J].Chemical Geology, 1984, 46(1):75-83. [13] CAO D, PENG S, CHEN X, et al.Analysis of hydrogen isotopes with quadrupole mass spectrometry[J].Analytical Methods, 20179(20):3067-3072. [14] LOTT D E, JENKINS W J.An automated cryogenic charcoal trap system for helium isotope mass spectrometry[J].Review of Scientific Instruments, 1984, 55(12):1982-1988. [15] PATI S G, BOLOTIN J, BRENNWALD M S, et al.Measurement of oxygen isotope ratios (18O/16O) of aqueous O2 in small samples by gas chromatography/isotope ratio mass spectrometry[J].Rapid Communications in Mass Spectrometry, 2016, 30(6):684-690. [16] YU E J, LEE K S.Improved method for simultaneous determination of the carbon isotopic composition and concentration of atmospheric CO2 using CF-IRMS[J].International Journal of Mass Spectrometry, 2020, 452:116327. [17] WANG Z, MAK J E.A new CF-IRMS system for quantifying stable isotopes of carbon monoxide from ice cores and small air samples[J].Atmospheric Measurement Techniques, 2010, 3(5):1307-1317. [18] SRIVASTAVA A.Physical model for multi-point normalization of dual-inlet isotope ratio mass spectrometry data[J].Analytical and Bioanalytical Chemistry, 2022, 414(19):5773-5779. [19] MIDWOOD A J, GEBBING T, WENDLER R, et al.Collection and storage of CO2 for 13C analysis:an application to separate soil CO2 efflux into root- and soil-derived components[J].Rapid Communications in Mass Spectrometry, 20(22):3379-3384. [20] MANAJ S, KIM S T.Techniques for measuring carbon and oxygen isotope compositions of atmospheric CO2 via isotope ratio mass spectrometry[J].Rapid Communications in Mass Spectrometry:RCM, 2021, 35(4). [21] 刘古良.光腔衰荡光谱法测量水分子及一氧化二氮分子的吸收光谱参数[D].合肥:中国科学技术大学, 2019. [22] GONFIANTINI R, VALKIERS S, TAYLOR P D P, et al.Using isotopic disequilibrium of CO2 to model gas adsorption in mass spectrometric measurements[J].International Journal of Mass Spectrometry and Ion Processes, 1997, 161(1/3):15-26. [23] SRIVASTAVA A, VERKOUTEREN R M.Metrology for stable isotope reference materials:13C/12C and 18O/16O isotope ratio value assignment of pure carbon dioxide gas samples on the Vienna PeeDee Belmnite-CO2 scale using dual-inlet mass spectrometry[J].Analytical and Bioanalytical Chemistry, 2019, 411(12):2743-2743. [24] SIRIGNANO C, NEUBERT R E M, MEIJER H A J.N2O influence on isotopic measurements of atmospheric CO2[J].Rapid Communications in Mass Spectrometry, 18(16):1839-1846. [25] BRAND W A, ASSONOV S S, COPLEN T B.Correction for the 17O interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry (IUPAC Technical Report)[J].Pure and Applied Chemistry, 2010, 82(8):1719-1733. [26] 庞智勇, 王欣楚, 李思亮, 等.基于高分辨气体稳定同位素质谱仪的甲烷团簇同位素测定[J].分析试验室, 2023, 42(1):33-37. [27] DOUGLAS P M J, MOGUEL R G, ANTHONY K M W, et al.Clumped isotopes link older carbon substrates with slower rates of methanogenesis in northern lakes[J].Geophys Res Lett, 2020, 47(6). [28] TEASDALE C J, HALL J A, MARTIN J P, et al.Discriminating methane sources in ground gas emissions in NW England[J].Quarterly Journal of Engineering Geology and Hydrogeology, 2018, 52(1):110-122. [29] ZIMNOCH M, NECKI J, CHMURA L, et al.Quantification of carbon dioxide and methane emissions in urban areas:source apportionment based on atmospheric observations[J].Mitigation and Adaptation Strategies for Global Change, 2018, 24(6):1051-1071. [30] ISHIZAWA M, CHAN D, WORTHY D, et al.Analysis of atmospheric CH4 in Canadian Arctic and estimation of the regional CH4 fluxes[J].Atmospheric Chemistry and Physics, 2019, 19(7):4637-4658. [31] RICE A L, GOTOH A A, AJIE H O, et al.High-precision continuous-flow measurement of delta13C and delta D of atmospheric CH4[J].Analytical Chemistry, 2001, 73(17):4104-4110. [32] 张念华, 冯靓, 王军淋, 等.同位素稀释结合气相色谱-串联二级质谱法测定PM2.5中12种硝基多环芳烃[J].中国卫生检验杂志, 2022, 32(20):2462-2465. [33] 张海潇, 沈潇雨, 郭照冰, 等.南京北郊地区昼夜大气PM2.5中硫同位素的组成及来源[J].环境科学研究, 2019, 32(3):440-446. [34] JIANG M, ZHANG Z Y, LI T, et al.Source apportionment of ammonium in atmospheric PM2.5 in the Pearl River Delta based on nitrogen isotope[J].Ecology and Environmental Sciences, 2022, 31(9):1840-1848. [35] REYNOLDS J H.High sensitivity mass spectrometer for noble gas analysis[J].Review of Scientific Instruments, 1956, 27:928-934. [36] 李军杰, 刘汉彬, 张佳, 等.应用Argus多接收稀有气体质谱仪准确测量空气的Ar同位素组成[J].岩矿测试, 2016, 35(3):229-235. [37] 李军杰, 刘汉彬, 张佳, 等.稀有气体质谱40Ar-39Ar定年分析技术研究进展[J].质谱学报, 2021, 42(5):656-671. [38] 毕哲, 周泽义, 刘紫譞, 等.二氧化碳同位素标准物质研究进展[J].化学分析计量, 2018, 27(5):122-126. [39] SUN Y H, WU J, WANG Y L, et al.Plasma-catalytic CO2 hydrogenation over a Pd/ZnO catalyst:in situ probing of gas-phase and surface reactions[J].JACS Au, 2022, 2(8):1800-1810. [40] YE S, HUBER T, VOGEL R, et al.FTIR analysis of GPCR activation using azido probes[J].Nature Chemical Biology, 2009, 5(6):397-399. [41] 谢孟峡, 刘媛.红外光谱酰胺Ⅲ带用于蛋白质二级结构的测定研究[J].高等学校化学学报, 2003(2):226-231. [42] URI Z, MAAYAN C, AVI L, et al.Ultraviolet intracavity laser absorption spectroscopy[J].Sensors and Actuators B:Chemical, 2023, 393, 134173. [43] XIA L, ZHOU L, RELLA C W, et al.Evaluation of the carbon isotopic effects of NDIR and CRDS analyzers on atmospheric CO2 measurements[J].Science China Earth Sciences, 2016, 29(6):1299-1307. [44] TIAN Y, WU X, GUO G, et al.A miniaturized multipass cell for measurement of O2 concentration in vials based on TDLAS[J].Optics and Lasers in Engineering, 2022, 163:107454. [45] HU L, LI Y, ZHANG L, et al.Advanced development of remote sensing FTIR in air environment monitoring[J].Spectroscopy and Spectroscopy Analysis, 2006, 26(10):1863-1867. [46] ESLER M B, GRIFFITH D W T, WILSON S R, et al.Precision trace gas analysis by FTIR spectroscopy.1.Simultaneous analysis of CO2, CH4, N2O and CO in air[J].Anal Chem, 2000, 72:206-215. [47] FLEIHER, ADAM J, YI H, SRIVASTAVA A, et al.Absolute 13C/12C isotope amount ratio for Vienna PeeDee Belemnite from infrared absorption spectroscopy[J].Nature Physics, 2021, 17(8):975. [48] SMALE D, SHERLOCK V, GRIFFITH D W, et al.A decade of CH4, CO and N2O in situ measurements at Lauder, New Zealand:assessing the long-term performance of a Fourier transform infrared trace gas and isotope analyser[J].Atmospheric Measurement Techniques, 2019, 12(1 Pt.2):637-673. [49] 李相贤, 高闽光, 徐亮, 等.基于傅里叶变换红外光谱法CO2气体碳同位素比检测研究[J].物理学报, 2013, 62(3):15-23. [50] VANDERLAAN S, NEUBERT R E M, MEIJER H A J.A single gas chromate graph for accurate atmosphereic mixing ratio measurements of CO2, CH4, N2O, SF6 and CO, Atmos[J].Meas Tech, 2009, 2:549-559. [51] VERMEULEN A T, HENSEN A, POPA M E, et al.Greenhouse gas observations from Cabauw Tall Tower(1992-2010)[J].Atmos Meas Tech, 2011, 4:617-644. [52] GRIFFITHS P R.Fourier transform infrared spectrometry[J].Science, 1983.doi: 10.1126/science.6623077. [53] FORSTMAIER A, CHEN J, DIETRICH F, et al.Quantification of methane emissions in Hamburg using a network of FTIR spectrometers and an inverse modeling approach[J].Atmospheric Chemistry and Physics, 2022, 23(12):6897-6922. [54] MOHN J, ZEEMAN M J, WERNER R A, et al.Continuous field measurements of δ13C-CO2 and trace gases by FTIR spectroscopy[J].Isotopes in Environmental and Health Studies, 2008, 44(3):241-251. [55] 李相贤, 徐亮, 高闽光, 等.CO2及其碳同位素比值高精度检测研究[J].物理学报, 2013, 62(18):27-34. [56] 王薇, 刘文清, 张天舒.傅里叶变换红外光谱法测量大气中CO2和H2O的稳定同位素[J].光谱学与光谱分析, 2013, 33(8):2017-2023. [57] 单昌功, 王薇, 刘诚, 等.基于傅里叶变换红外光谱技术测量大气中CO2的稳定同位素比值[J].物理学报, 2017, 66(22):149-157. [58] FLORES E, VIALLON J, MOUSSAY P, et al.Calibration strategies for FTIR and other isotope ratio infrared spectrometer instruments for accurate δ13C and δ18O measurements of CO2 in air[J].Analytical Chemistry, 2017, 89(6):3648-3655. [59] FLORES E, VIALLON J, MOUSSAY P, et al.An FTIR method for accurate CO2 mole fraction measurements with correction for differences in isotopic composition of gases[J].Metrologia, 2019, 56(4):044005-1-044005-10. [60] 王薇, 刘文清, 张天舒.利用傅里叶变换红外光谱技术连续测量环境大气中水汽的稳定同位素[J].光学学报, 2014, 34(1):300-306. [61] GRIFFITH D W T, DEUTSCHER N M, CALDOW C, et al.A Fourier transform infrared trace gas and isotope analyser for atmosphereic applications[J].Atmospheric Measurement Techniques, 2012, 5(10):2481-2498. [62] WERNER R A, ROTH M, BRAND W A.Extraction of CO2 from air samples for isotopic analysis and limits to ultra high precision δ18O determination in CO2 gas[J].Rapid Commun Mass Spectrom, 2001, 15:2152-2167. [63] LIU L X, ZHOU L X, VAUGHN B, et al.Background variations of atmospheric CO2 and carbon-stable isotopes at Waliguan and Shangdiazi stations in China[J].Journal of Geophysical Research:Atmospheres, 2014, 119:5602-5612. [64] SOCKI R, MATTHEW M, MCHALE J, et al.Enhanced stability of stable isotopic gases[J].ACS Omega, 2020, 5(29):17926-17930. [65] 夏滑, 董凤忠, 韩荦, 等.中红外波段大气碳同位素激光吸收光谱研究[J].光谱学与光谱分析, 2017, 37(11):3365-3369. [66] XIN F, LI J, GUO J, et al.Measurement of atmospheric CO2 column concentrations based on Open-Path TDLAS[J].Sensors, 2021, 21(5):1722. [67] LU G, ZANG Y, ZHAO G, et al.Research on the seed respiration CO2 detection system based on TDLAS technology[J].International Journal of Optics, 2023, 2023:8017726. [68] O'KEEFE A, DEACON D A G.Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources[J].Review of Scientific Instruments, 1988, 59(12):2544-2551. [69] BROWNE D E, PEVERALL R, GRANT A D, et al.Determining water transport kinetics in limestone by dualwavelength cavity ring-down spectroscopy[J].Analytical Chemistry, 2022, 94(7):3126-3134. [70] ENGELN R, BERDEN G, PEETERS R, et al.Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy[J].Review of Scientific Instruments, 1998, 69(11):3763-3769. [71] 王宣, 高光珍, 龙芳宇, 等.基于波长调制腔增强吸收光谱技术的CO浓度测量[J/OL].中国激光:1-17[2023-03-28].http://kns.cnki.net/kcms/detail/31.1339.TN.20230309.1843.012.html. [72] 周枫然, 韩桥, 张体强, 等.傅里叶变换红外光谱技术的应用及进展[J].化学试剂, 2021, 43(8):1001-1009. [73] ROTHMAN L S.History of the HITRAN database[J].Nature Reviews Physics, 2021, 3:302-304. [74] KRAINOV V P, SMIRNOV B M.Description of emission processes in molecular gases based with the HITRAN database[J].Journal of Experimental and Theoretical Physics, 2019, 129(1):9-18. [75] MENANG K P.Updates of HITRAN spectroscopic database from 2008 to 2016 and implications for near-infrared radiative transfer calculations[J].Quarterly Journal of the Royal Meteorological Society, 2019, 145(720):1281-1289. [76] GORDON I E, ROTHMAN L S, HILL C, et al.HITRAN application programming interface (HAPI):a comprehensive approach to working with spectroscopic data[J].Journal of Quantitative Spectroscopy & Radiative Transfer, 2016, 177:15-30. [77] 刘青松, 但有全, 杨鹏, 等.基于HITRAN数据库的深海甲烷辐射光谱仿真研究[J].光谱学与光谱分析, 2022, 42(9):2714-2719. [78] GOLDMAN A, GAMACHE R R, PERRIN A, et al.HITRAN partition functions and weighted transition-moments squared[J].Journal of Quantitative Spectroscopy and Radiative Transfer, 2000, 66(5):455-486. [79] 李相贤, 徐亮, 高闽光, 等.分析温室气体及CO2碳同位素比值的傅里叶变换红外光谱仪[J].光学精密工程, 2014, 22(9):2359-2368. [80] 朱军, 刘文清, 刘建国, 等.FTIR光谱拟合方法在反演气体浓度中的应用[J].光谱学与光谱分析, 2005(10):39-42. [81] HILTON M, LETTINGTON A, MILLS I M.Quantitative analysis of remote gas temperatures and concentrations from their infrared emission spectra[J].Measurement Science and Technology, 1995, 6(9):1236-1241. [82] 童晶晶, 魏秀丽, 刘志明, 等.FTIR光谱法测量不同化肥的氨挥发[J].光谱学与光谱分析, 2009, 29(7):1872-1875. [83] GRIFFITH D W T, JAMIE I, ESLER M.Real-time field measurements of stable isotopes in water and CO2 by Fourier transform infrared spectrometry[J].Isotopes in Environmental and Health Studies, 2006, 42(1):9-20. [84] 高闽光, 刘文清, 张天舒, 等.MALT-CLS方法在大气痕量气体FTIR定量分析中的应用[J].光谱学与光谱分析, 2006(7):1213-1216. [85] HAALAND D M, EASTERLING R G, VOPICKA D A.Multivariate least-squares methods applied to the quantitative spectral analysis of multicomponent samples[J].Applied Spectroscopy, 1985, 39(1):73-84. [86] 何林涛, 涂光忠, 董玉霞.Sadtler(萨特勒)红外光谱数据库联网检索[J].光谱学与光谱分析, 2000(6):825-826. [87] KRAMER A.Convenient method for encoding infrared spectra linear in wavenumber using the sadtler notation[J].Applied Spectroscopy, 1967, 21(3):184-185. [88] SUN M, WANG F, LIU W, et al.Novel application of gas chromatography in measurement of gas flow rate[J].Flow Measurement and Instrumentation, 2016, 50:245-251. [89] KUMAR A, SHARMA C.Recent update of the various sources originating ghost peaks in gas chromatography:a review[J].Journal of Chromatography A, 2022, 1685. [90] 方小青, 徐铮, 惠越.气相色谱技术研究进展及其应用[J].浙江化工, 2021, 52(2):52-54. [91] BROWN B A.The oxygen isotopes.International[J] Journal of Modern Physics E, 2017, 26(1/2):1740003. [92] ADNEW G A, WORKMAN E, JANSSEN C, et al.Temperature dependence of isotopic fractionation in the CO2-O2 isotope exchange reaction[J].Rapid Communications in Mass Spectrometry, 2022, 36(12):e9301. [93] WHISNANT C S, HANSEN P A, KELLEY T D.Measuring the relative concentration of H2 and D2 in HD gas with gas chromatography[J].Review of Scientific Instruments, 2011, 82(2):024101. [94] BIDICA N, CRISTESCU I, CARCADEA E, et al.Modelling synergistic isotope effects of the permeation of multiple hydrogen isotopes through metals[J].Fusion Engineering and Design, 2019, 146PB(Sep.):1938-1941. [95] ATZRODT J, DERDAU V, KERR W J, et al.Hydrogen isotope exchange.the foundation of C-H activation and isotope science in drug discovery[J].Angewandte Chemie, 2018, 130(7):1774-1802. [96] LEPRON M, DANIEL-BERTRAND M, MENCIA G, et al.Nanocatalyzed hydrogen isotope exchange[J].Accounts of Chemical Research, 2021, 54(6):1465-1480. [97] WU E, SCHNEIDER C, WALZ R, et al.Adsorption of hydrogen isotopes on graphene[J].Nuclear Engineering and Technology, 2022, 54(11):4022-4029. [98] GANT P L, YANG K.Separation of hydrogen isotopes by gas-solid chromatography[J].Science.doi:10.1126/science.129.3362.1548-a (1959). [99] 刘振兴, 杨洪广, 赵崴巍, 等.微气相色谱法分析氢氘同位素组分气体[J].分析测试学报, 2022, 41(2):266-270. [100] POPA M E, PAUL D, JANSSEN C, et al.H2 clumped isotope measurements at natural isotopic abundances[J].Rapid Communications in Mass Spectrometry, 2019, 33(3):239-251.
点击查看大图
计量
- 文章访问数: 193
- HTML全文浏览量: 16
- PDF下载量: 14
- 被引次数: 0