DEVELOPMENT OF A PORTABLE HIGH PRECISION CARBON DIOXIDE DETECTOR AND ELIMINATION OF HUMIDITY INTERFERENCE
-
摘要: 二氧化碳(CO2)的持续增加会加剧温室效应,从而影响人们的正常生活。目前,常见的CO2监测设备体积大且价格高。因此,基于非分散红外(non-dispersive infrared,NDIR)光学吸收原理的传感器,设计了一种便携式CO2监测设备。考虑到现场监测时,传感器容易受到相对湿度(relative humidity,RH)的影响。因此,研究了RH对传感器响应的影响,了解传感器在不同RH下的响应特征;并通过浓度和湿度变化的回归方程拟合,得到R2>0.94的二次函数校准公式。通过连续的室外监测与标准参比仪器进行对比发现,校准后的数据与标准参比仪器之间有更好的相关性,R2从校准前的0.62~0.73提高至0.83~0.97。为进一步提高数据的准确性,将传感器进行集群分析,这种方法能够极大程度上削弱因传感器个体差异造成的误差。通过多个传感器数据组合分析发现,平均相对偏差随传感器数量增加而减小,最小平均相对偏差仅为1.4%。Abstract: Increasing carbon dioxide (CO2) exacerbated the greenhouse effect, which threatened human normal lives. Currently, the equipment used for CO2 monitoring is heavy and expensive. Therefore, the study designed a portable CO2 detector based on non-dispersive infrared (NDIR) optical absorption principles. Considering on-site monitoring, the sensor was susceptible to the interference of relative humidity (RH). Therefore, the effect of RH on the response of the sensor was studied, and the response characteristics of the sensor at different RH levels were understood. Through the combination of concentration and humidity changes, the correlation (R2) of the secondary function of the correlation was above 0.94. Through continuous outdoor monitoring and comparison with the standard reference instruments, it was found that there was a better correlation between the calibrated data and the standard reference instrument, with R2 increasing from 0.62 to 0.73 before calibration, to 0.83 to 0.97. The cluster analysis of sensors can greatly reduce the error caused by individual differences in sensors, thus improving the accuracy of data. It was found that through analysis of multiple sensor data combinations, the average relative deviation decreased with the increase in the number of sensors, and the minimum average relative deviation was only 1.4%.
-
[1] HARMSEN M, TABAK C, HOGLUND-Isaksson L, et al.Uncertainty in non-CO2 greenhouse gas mitigation contributes to ambiguity in global climate policy feasibility[J].Nat Commun, 2023, 14(1):2949. [2] EBI K L, BOYER C, OGDEN N, et al.Burning embers:synthesis of the health risks of climate change[J].Environmental Research Letters, 2021, 16(4):044042. [3] BABENHAUSERHEIDE A, HASE F, MORINO I.Net CO2 fossil fuel emissions of Tokyo estimated directly from measurements of the Tsukuba TCCON site and radiosondes[J].Atmospheric Measurement Techniques, 2020, 13(5):2697-2710. [4] 曹丽斌, 李明煜, 张立, 等.长三角城市群CO2排放达峰影响研究[J].环境工程, 2020, 38(11):33-38, 59. [5] GEMERY P A, TROLIER M, WHITE J W C.Oxygen isotope exchange between carbon dioxide and water following atmospheric sampling using glass flasks[J].Journal of Geophysical Research-Atmospheres, 1996, 101(D9):14415-14420. [6] 吴振涛, 庞小兵, 韩张亮, 等.二氧化碳捕集、利用与储存技术进展及趋势[J].三峡生态环境监测, 2022, 7(4):12-22. [7] GREEN O, FINKELSTEIN P, RIVERO-CRESPO M A, et al.Activity-based approach for selective molecular CO2 sensing[J].Journal of the American Chemical Society, 2022, 144(19):8717-8724. [8] MOROZOV O, TUNAKOVA Y, HUSSEIN S M R H, et al.Addressed combined fiber-optic sensors as key element of multisensor greenhouse gas monitoring systems[J].Sensors, 2022, 22(13):4827. [9] ZHENG B, CHEVALLIER F, CIAIS P, et al.Observing carbon dioxide emissions over China's cities and industrial areas with the Orbiting Carbon Observatory-2[J].Atmospheric Chemistry and Physics, 2020, 20(14):8501-8510. [10] LEE H, HAN S O, RYOO S B, et al.The measurement of atmospheric CO2 at KMA GAW regional stations, its characteristics, and comparisons with other East Asian sites[J].Atmospheric Chemistry and Physics, 2019, 19(4):2149-2163. [11] LI Z B, MA H L, CAO Z S, et al.High-sensitive off-axis integrated cavity output spectroscopy and its measurement of ambient CO2 at 2 mu m[J].Acta Physica Sinica, 2016, 65(5):053301. [12] XIN F, LI J, GUO J, et al.Measurement of atmospheric CO2 column concentrations based on open-path TDLAS[J].Sensors, 2021, 21(5):1722. [13] 郑凯元.腔增强红外气体检测技术与应用[D].吉林:吉林大学, 2021. [14] VAFAEI M, AMINI A, SIADATAN A.Breakthrough in CO2 measurement with a chamberless NDIR optical gas sensor[J].Ieee Transactions on Instrumentation and Measurement, 2020, 69(5):2258-2268. [15] TAN X C, ZHANG H, LI J Y, et al.Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors[J].Nature Communications, 2020, 11(1):5245. [16] JIA X, ROELS J, BAETS R, et al.On-chip non-dispersive infrared CO2 sensor based on an integrating cylinder[J].Sensors, 2019, 19(19). [17] DELSARTE I, COHEN G J V, MOMTBRUN M, et al.Soil carbon dioxide fluxes to atmosphere:the role of rainfall to control CO2 transport[J].Applied Geochemistry, 2021, 127:104854. [18] HUSSAIN H, KIM J, YI S.Characteristics and temperature compensation of non-dispersive infrared (NDIR) alcohol gas sensors according to incident light intensity[J].Sensors, 2018, 18(9):2911. [19] TRIEU VUONG D, CHOI I Y, SON Y S, et al.A review on non-dispersive infrared gas sensors:improvement of sensor detection limit and interference correction[J].Sensors and Actuators B-Chemical, 2016, 231:529-538. [20] VINCENT T A, GARDNER J W.A low cost MEMS based NDIR system for the monitoring of carbon dioxide in breath analysis at ppm levels[J].Sensors and Actuators B-Chemical, 2016, 236:954-964. [21] HAN J H, HAN S W, KIM S M, et al.High detection performance of NDIR CO2 sensor using stair-tapered reflector[J].IEEE Sensors Journal, 2013, 13(8):3090-3097. [22] JIA X, ROELS J, BAETS R, et al.A miniaturised, fully integrated NDIR CO2 sensor on-chip[J].Sensors, 2021, 21(16):5347. [23] ARZOUMANIAN E, VOGEL F R, BASTOS A, et al.Characterization of a commercial lower-cost medium-precision non-dispersive infrared sensor for atmospheric CO2 monitoring in urban areas[J].Atmospheric Measurement Techniques, 2019, 12(5):2665-2677. [24] WU Z T, PANG X B, XING B, et al.Three-dimensional spatiotemporal variability of CO2 in suburban and urban areas of Shaoxing City in the Yangtze River Delta, China[J].Science of the Total Environment, 2023, 881:163501. [25] JOE H E, YUN H, JO S H, et al.A review on optical fiber sensors for environmental monitoring[J].International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, 5(1):173-191. [26] K3010, 000 ppm CO2 Sensor[EB/OL].https://www.CO2 meter.com/products/k-30-CO2-sensor-module.2023-6-20. [27] PANG X, SHAW M D, GILLOT S, et al.The impacts of water vapour and co-pollutants on the performance of electrochemical gas sensors used for air quality monitoring[J].Sensors and Actuators B-Chemical, 2018, 266:674-684. [28] CHATERJEE S, KRUPADAM R J.Amino acid-imprinted polymers as highly selective CO2 capture materials[J].Environmental Chemistry Letters, 2019, 17(1):465-472. [29] SMITH K R, EDWARDS P M, EVANS M J, et al.Clustering approaches to improve the performance of low cost air pollution sensors[J].Faraday Discussions, 2017, 200:621-637.
点击查看大图
计量
- 文章访问数: 85
- HTML全文浏览量: 12
- PDF下载量: 5
- 被引次数: 0