中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

便携式高精度二氧化碳检测仪的研制及湿度干扰消除的研究

周磊 庞小兵 吴振涛

周磊, 庞小兵, 吴振涛. 便携式高精度二氧化碳检测仪的研制及湿度干扰消除的研究[J]. 环境工程, 2023, 41(10): 37-44. doi: 10.13205/j.hjgc.202310006
引用本文: 周磊, 庞小兵, 吴振涛. 便携式高精度二氧化碳检测仪的研制及湿度干扰消除的研究[J]. 环境工程, 2023, 41(10): 37-44. doi: 10.13205/j.hjgc.202310006
ZHOU Lei, PANG Xiaobing, WU Zhentao. DEVELOPMENT OF A PORTABLE HIGH PRECISION CARBON DIOXIDE DETECTOR AND ELIMINATION OF HUMIDITY INTERFERENCE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 37-44. doi: 10.13205/j.hjgc.202310006
Citation: ZHOU Lei, PANG Xiaobing, WU Zhentao. DEVELOPMENT OF A PORTABLE HIGH PRECISION CARBON DIOXIDE DETECTOR AND ELIMINATION OF HUMIDITY INTERFERENCE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 37-44. doi: 10.13205/j.hjgc.202310006

便携式高精度二氧化碳检测仪的研制及湿度干扰消除的研究

doi: 10.13205/j.hjgc.202310006
基金项目: 

浙江省"领雁"研发攻关计划(2022C03073);浙江省自然科学基金(LZ20D050002);绍兴市科技计划项目(2022B41006)

详细信息
    作者简介:

    周磊(1996-),男,研究生。774149518@qq.com

    通讯作者:

    庞小兵(1978-),男,教授,博士,主要从事大气环境监测和环境仪器研制研究。pangxb@zjut.edu.cn

DEVELOPMENT OF A PORTABLE HIGH PRECISION CARBON DIOXIDE DETECTOR AND ELIMINATION OF HUMIDITY INTERFERENCE

  • 摘要: 二氧化碳(CO2)的持续增加会加剧温室效应,从而影响人们的正常生活。目前,常见的CO2监测设备体积大且价格高。因此,基于非分散红外(non-dispersive infrared,NDIR)光学吸收原理的传感器,设计了一种便携式CO2监测设备。考虑到现场监测时,传感器容易受到相对湿度(relative humidity,RH)的影响。因此,研究了RH对传感器响应的影响,了解传感器在不同RH下的响应特征;并通过浓度和湿度变化的回归方程拟合,得到R2>0.94的二次函数校准公式。通过连续的室外监测与标准参比仪器进行对比发现,校准后的数据与标准参比仪器之间有更好的相关性,R2从校准前的0.62~0.73提高至0.83~0.97。为进一步提高数据的准确性,将传感器进行集群分析,这种方法能够极大程度上削弱因传感器个体差异造成的误差。通过多个传感器数据组合分析发现,平均相对偏差随传感器数量增加而减小,最小平均相对偏差仅为1.4%。
  • [1] HARMSEN M, TABAK C, HOGLUND-Isaksson L, et al.Uncertainty in non-CO2 greenhouse gas mitigation contributes to ambiguity in global climate policy feasibility[J].Nat Commun, 2023, 14(1):2949.
    [2] EBI K L, BOYER C, OGDEN N, et al.Burning embers:synthesis of the health risks of climate change[J].Environmental Research Letters, 2021, 16(4):044042.
    [3] BABENHAUSERHEIDE A, HASE F, MORINO I.Net CO2 fossil fuel emissions of Tokyo estimated directly from measurements of the Tsukuba TCCON site and radiosondes[J].Atmospheric Measurement Techniques, 2020, 13(5):2697-2710.
    [4] 曹丽斌, 李明煜, 张立, 等.长三角城市群CO2排放达峰影响研究[J].环境工程, 2020, 38(11):33-38

    , 59.
    [5] GEMERY P A, TROLIER M, WHITE J W C.Oxygen isotope exchange between carbon dioxide and water following atmospheric sampling using glass flasks[J].Journal of Geophysical Research-Atmospheres, 1996, 101(D9):14415-14420.
    [6] 吴振涛, 庞小兵, 韩张亮, 等.二氧化碳捕集、利用与储存技术进展及趋势[J].三峡生态环境监测, 2022, 7(4):12-22.
    [7] GREEN O, FINKELSTEIN P, RIVERO-CRESPO M A, et al.Activity-based approach for selective molecular CO2 sensing[J].Journal of the American Chemical Society, 2022, 144(19):8717-8724.
    [8] MOROZOV O, TUNAKOVA Y, HUSSEIN S M R H, et al.Addressed combined fiber-optic sensors as key element of multisensor greenhouse gas monitoring systems[J].Sensors, 2022, 22(13):4827.
    [9] ZHENG B, CHEVALLIER F, CIAIS P, et al.Observing carbon dioxide emissions over China's cities and industrial areas with the Orbiting Carbon Observatory-2[J].Atmospheric Chemistry and Physics, 2020, 20(14):8501-8510.
    [10] LEE H, HAN S O, RYOO S B, et al.The measurement of atmospheric CO2 at KMA GAW regional stations, its characteristics, and comparisons with other East Asian sites[J].Atmospheric Chemistry and Physics, 2019, 19(4):2149-2163.
    [11] LI Z B, MA H L, CAO Z S, et al.High-sensitive off-axis integrated cavity output spectroscopy and its measurement of ambient CO2 at 2 mu m[J].Acta Physica Sinica, 2016, 65(5):053301.
    [12] XIN F, LI J, GUO J, et al.Measurement of atmospheric CO2 column concentrations based on open-path TDLAS[J].Sensors, 2021, 21(5):1722.
    [13] 郑凯元.腔增强红外气体检测技术与应用[D].吉林:吉林大学, 2021.
    [14] VAFAEI M, AMINI A, SIADATAN A.Breakthrough in CO2 measurement with a chamberless NDIR optical gas sensor[J].Ieee Transactions on Instrumentation and Measurement, 2020, 69(5):2258-2268.
    [15] TAN X C, ZHANG H, LI J Y, et al.Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors[J].Nature Communications, 2020, 11(1):5245.
    [16] JIA X, ROELS J, BAETS R, et al.On-chip non-dispersive infrared CO2 sensor based on an integrating cylinder[J].Sensors, 2019, 19(19).
    [17] DELSARTE I, COHEN G J V, MOMTBRUN M, et al.Soil carbon dioxide fluxes to atmosphere:the role of rainfall to control CO2 transport[J].Applied Geochemistry, 2021, 127:104854.
    [18] HUSSAIN H, KIM J, YI S.Characteristics and temperature compensation of non-dispersive infrared (NDIR) alcohol gas sensors according to incident light intensity[J].Sensors, 2018, 18(9):2911.
    [19] TRIEU VUONG D, CHOI I Y, SON Y S, et al.A review on non-dispersive infrared gas sensors:improvement of sensor detection limit and interference correction[J].Sensors and Actuators B-Chemical, 2016, 231:529-538.
    [20] VINCENT T A, GARDNER J W.A low cost MEMS based NDIR system for the monitoring of carbon dioxide in breath analysis at ppm levels[J].Sensors and Actuators B-Chemical, 2016, 236:954-964.
    [21] HAN J H, HAN S W, KIM S M, et al.High detection performance of NDIR CO2 sensor using stair-tapered reflector[J].IEEE Sensors Journal, 2013, 13(8):3090-3097.
    [22] JIA X, ROELS J, BAETS R, et al.A miniaturised, fully integrated NDIR CO2 sensor on-chip[J].Sensors, 2021, 21(16):5347.
    [23] ARZOUMANIAN E, VOGEL F R, BASTOS A, et al.Characterization of a commercial lower-cost medium-precision non-dispersive infrared sensor for atmospheric CO2 monitoring in urban areas[J].Atmospheric Measurement Techniques, 2019, 12(5):2665-2677.
    [24] WU Z T, PANG X B, XING B, et al.Three-dimensional spatiotemporal variability of CO2 in suburban and urban areas of Shaoxing City in the Yangtze River Delta, China[J].Science of the Total Environment, 2023, 881:163501.
    [25] JOE H E, YUN H, JO S H, et al.A review on optical fiber sensors for environmental monitoring[J].International Journal of Precision Engineering and Manufacturing-Green Technology, 2018, 5(1):173-191.
    [26] K3010, 000 ppm CO2 Sensor[EB/OL].https://www.CO2 meter.com/products/k-30-CO2-sensor-module.2023-6-20.
    [27] PANG X, SHAW M D, GILLOT S, et al.The impacts of water vapour and co-pollutants on the performance of electrochemical gas sensors used for air quality monitoring[J].Sensors and Actuators B-Chemical, 2018, 266:674-684.
    [28] CHATERJEE S, KRUPADAM R J.Amino acid-imprinted polymers as highly selective CO2 capture materials[J].Environmental Chemistry Letters, 2019, 17(1):465-472.
    [29] SMITH K R, EDWARDS P M, EVANS M J, et al.Clustering approaches to improve the performance of low cost air pollution sensors[J].Faraday Discussions, 2017, 200:621-637.
  • 加载中
计量
  • 文章访问数:  93
  • HTML全文浏览量:  13
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-21
  • 网络出版日期:  2023-12-26

目录

    /

    返回文章
    返回