APPLICATION OF CO2 DETECTOR BASED ON SENSORS IN CO2 FLUX DETECTION OF RESERVOIRS
-
摘要: 在自然水体水-气界面二氧化碳(CO2)通量的测定中常用的CO2检测仪器是基于长光路红外吸收法,仪器质量和体积偏大且价格高昂。为了降低研究成本,减小检测设备的质量和体积,将1种基于非分散红外(non-dispersive infrared,NDIR)原理的CO2传感器部署在通量箱中,搭建了1套低成本CO2检测仪器,并与原位检测对比实验。结果表明:低成本CO2检测仪的CO2体积分数检测结果相比参比仪器展现出良好的相关性(R2=0.86),低成本检测仪的相对偏差范围在-1.45%~0.92%。根据低成本检测仪检测结果计算出各检测点位的CO2通量在7.76~15.93 mmol/(m2·d),其变化规律与参比仪器的结果一致。环境相对湿度和传感器自身的电压漂移是CO2通量检测偏差的主要来源,可通过湿度修正和增加通量箱内CO2传感器数量的方法来降低这两者的干扰。低成本检测仪在测定水库CO2通量方面有良好的应用前景。
-
关键词:
- 传感器 /
- 通量箱 /
- 二氧化碳(CO2)通量 /
- 水库 /
- 检测偏差
Abstract: The commonly used CO2 detection instrument for the measurement of CO2 flux at the water-air interface of natural water is based on the long light path infrared absorption method, which is bulky and expensive. To reduce the research cost and the mass and volume of the detection equipment, a low-cost CO2 sensor based on the principle of non-dispersive infrared (NDIR) was deployed in the flux box to build a low-cost CO2 detection instrument, and the in-situ detection contrast experiment with the referred instrument was carried out. The results showed that, CO2 volume fraction detection results of the low-cost CO2 detector showed a good correlation (R2=0.86) with the referred instrument, and the relative deviation range of the low-cost detector was -1.45% to 0.92%. According to the low-cost detector results, the CO2 flux at each detection point was estimated in the range of 7.76 to 15.93 mmol/(m2/d), and its change rule was the same as that of the referred instrument. Environmental relative humidity and voltage drift of the sensor itself were the main sources of CO2 flux detection deviation. The interference of these two factors could be reduced by humidity correction and increasing the number of CO2 sensors in the flux box. This low-cost detector has a good application prospect in measuring the CO2 flux of reservoirs.-
Key words:
- sensor /
- flux box /
- carbon dioxide flux /
- reservoir /
- detection deviation
-
[1] 王仲颖, 郑雅楠, 赵勇强, 等.碳中和背景下可再生能源成为主导能源的发展路径及展望(下)[J].中国能源, 2021, 43(10):9-17. [2] 吴振涛, 庞小兵, 韩张亮, 等.二氧化碳捕集、利用与储存技术进展及趋势[J].三峡生态环境监测, 2022, 7(4):12-22. [3] LI S, BUSH R T, SANTOS I R, et al.Large greenhouse gases emissions from China's lakes and reservoirs[J].Water Research, 2018, 147:13-24. [4] LI Z, SUN Z, CHEN Y, et al.The net GHG emissions of the Three Gorges Reservoir in China:Ⅱ.Post-impoundment GHG inventories and full-scale synthesis[J].Journal of Cleaner Production, 2020, 277:123961. [5] MIAO Y, SUN F, HONG W, et al.Greenhouse gas emissions from a main tributary of the Yangtze River, Eastern China[J].Sustainability, 2022, 14(21):13729. [6] RAN L, BUTMAN D E, BATTIN T J, et al.Substantial decrease in CO2 emissions from Chinese inland waters due to global change[J].Nature Communications, 2021, 12(1):1730. [7] 李哲, 杨柳, 吴兴华, 等.三峡水库CO2、CH4通量监测分析研究[J].湖泊科学, 2023, 35(2):423-434. [8] 张翎, 王远见, 夏星辉.水库建成与运行对温室气体排放的影响[J].环境科学学报, 2022, 42(1):298-307. [9] 付重庆, 徐坚, 肖潇, 等.水库温室气体排放监测方法研究进展[C]//中国水利学会.2022中国水利学术大会论文集(第四分册).郑州:黄河水利出版社, 2022:337-347. [10] 谢恒, 龙丽, 穆晓辉, 等.城市水体CO2和CH4通量监测的静态箱法与薄边界层模型估算法比较[J].三峡大学学报(自然科学版), 2019, 41(5):79-83. [11] 姚骁, 李哲, 郭劲松, 等.水-气界面CO2通量监测的静态箱法与薄边界层模型估算法比较[J].湖泊科学, 2015, 27(2):289-296. [12] 秦宇, 舒钰清, 王雨潇.三峡库区万州段典型干支流水华期CO2通量变化[J].环境工程, 2023, 41(2):43-52. [13] ERKKILA K M, OJALA A, BASTVIKEN D, et al.Methane and carbon dioxide fluxes over a lake:comparison between eddy covariance, floating chambers and boundary layer method[J].Biogeosciences, 2018, 15(2):429-445. [14] WEN Z, SHANG Y, LYU L, et al.A Review of Quantifying pCO2 in Inland Waters with a Global Perspective:challenges and Prospects of Implementing Remote Sensing Technology[J].Remote Sensing, 2021, 13(23):4916. [15] 赵登忠, 谭德宝, 李翀, 等.隔河岩水库二氧化碳通量时空变化及影响因素[J].环境科学, 2017, 38(3):954-963. [16] ROOM E I, LAURINGSON V, LAAS A, et al.Summer greenhouse gas fluxes in different types of hemiboreal lakes[J].Science of the Total Environment, 2022, 843:156732. [17] 陈敏, 许浩霆, 郑祥旺, 等.夏季降雨事件对水库温室气体通量变化的影响:来自湖北官庄水库的高频观测[J].湖泊科学, 2021, 33(6):1857-1870. [18] 吴瑶洁, 李海英, 陈文重, 等.夏季温榆河温室气体释放特征与影响因素研究[J].环境科学与技术, 2016, 39(5):8-16. [19] PANG X, CHEN L, SHI K, et al.A lightweight low-cost and multipollutant sensor package for aerial observations of air pollutants in atmospheric boundary layer[J].Science of the Total Environment, 2021, 764:142828. [20] CHEN L, PANG X, LI J, et al.Vertical profiles of O3, NO2 and PM in a major fine chemical industry park in the Yangtze River Delta of China detected by a sensor package on an unmanned aerial vehicle[J].Science of the Total Environment, 2022, 845:157113. [21] YANG L H, HAGAN D H, RIVERA-Rios J C, et al.Investigating the sources of urban air pollution using low-cost air quality sensors at an urban atlanta site[J].Environmental Science & Technology, 2022, 56(11):7063-7073. [22] MOROZOV O, TUNAKOVA Y, HUSSEIN S, et al.Addressed combined fiber-optic sensors as key element of multisensor greenhouse gas monitoring systems[J].Sensors, 2022, 22(13):4827. [23] ARZOUMANIAN E, VOGEL F R, BASTOS A, et al.Characterization of a commercial lower-cost medium-precision non-dispersive infrared sensor for atmospheric CO2 monitoring in urban areas[J].Atmospheric Measurement Techniques, 2019, 12(5):2665-2677. [24] VINCENT T A, GARDNER J W.A low cost MEMS based NDIR system for the monitoring of carbon dioxide in breath analysis at ppm levels[J].Sensors and Actuators B:Chemical, 2016, 236:954-964. [25] WU Z, PANG X, XING B, et al.Three-dimensional spatiotemporal variability of CO2 in suburban and urban areas of Shaoxing City in the Yangtze River Delta, China[J].Science of the Total Environment, 2023, 881:163501. [26] 罗佳宸, 李思悦.三峡库区典型河流水-气界面CO2通量日变化观测及其影响因素分析[J].环境科学, 2018, 39(11):5217-5226. [27] DINH T V, CHOI I Y, SON Y S, et al.A review on non-dispersive infrared gas sensors:improvement of sensor detection limit and interference correction[J].Sensors and Actuators B:Chemical, 2016, 231:529-538. [28] 胡涛, 黄健, 丁颖, 等.基于漂浮箱法和扩散模型法测定淡水养殖鱼塘甲烷排放通量的比较[J].环境科学, 2020, 41(2):941-951. [29] 高洁, 郑循华, 王睿, 等.漂浮通量箱法和扩散模型法测定内陆水体CH4和N2O排放通量的初步比较研究[J].气候与环境研究, 2014, 19(3):290-302. [30] YANG L, LU F, ZHOU X, et al.Progress in the studies on the greenhouse gas emissions from reservoirs[J].Acta Ecologica Sinica, 2014, 34(4):204-412. [31] 杨平, 仝川.淡水水生生态系统温室气体排放的主要途径及影响因素研究进展[J].生态学报, 2015, 35(20):6868-6880. [32] SUN H, LU X, YU R, et al.Eutrophication decreased CO2 but increased CH4 emissions from lake:a case study of a shallow Lake Ulansuhai[J].Water Research, 2021, 201:117363. [33] 潘甫钱, 胡斌, 梁晓瑜, 等.非色散红外CO2传感器温度补偿方法研究[J].激光与红外, 2023, 53(6):887-894. [34] 方晶晶, 任小孟, 徐新宏, 等.高压环境下2种NDIR型CO2红外传感器的响应规律[J].装备环境工程, 2022, 19(7):129-136. [35] SMITH K R, EDWARDS P M, IVATT P D, et al.An improved low-power measurement of ambient NO2 and O3 combining electrochemical sensor clusters and machine learning[J].Atmospheric Measurement Techniques, 2019, 12(2):1325-1336.
点击查看大图
计量
- 文章访问数: 100
- HTML全文浏览量: 24
- PDF下载量: 7
- 被引次数: 0