RESEARCH PROGRESS ON CO2 GEOLOGICAL STORAGE LEAKAGE AND MONITORING
-
摘要: CO2泄漏是威胁CCUS地质封存项目长期安全运行的主要因素,有效的安全监测体系是开展项目风险管理、决策制定的基础。CO2主要通过井筒、盖层、断层或裂缝3种途径泄漏,不同途径泄漏特征存在一定差异,监测手段也有所不同。基于原理、优劣势、发展趋势等多方面梳理了CO2环境监测、安全监测及运移监测3类监测方法,涵盖大气、近地表、浅部地层、地表形变、地层形变、地应力、井筒完整性、井筒腐蚀、CO2地下运移等监测技术;概述了国内外典型项目监测技术的发展情况,为我国未来开展碳封存工程提供参考和借鉴。现有监测方法众多,单一监测技术难以满足工程需求,高精度原位在线环境监测、组合式协同智能安全监测、长期性连续动态运移监测将有望成为未来研究的重点。建议在高精度、低成本、可实时监测的基础上,构建集“空间层位、安全运移”为一体的监测体系。Abstract: CO2 leakage is the main factor threatening the long-term safe operation of CCUS geological storage projects, and an effective safety monitoring system is the basis of project risk management and decision-making. CO2 mainly escapes through three pathways:wellbore, cap rock, fault, or fracture. As different pathways pose different leakage characteristics, different monitoring methods are required. Based on the principles, advantages, disadvantages, and development trends, three main monitoring methods, i.e. CO2 environment monitoring, safety monitoring, and migration monitoring were summarized, covering the following monitoring technologies, such as atmosphere, near surface, shallow formation, surface deformation, geological deformation, ground stress, well integrity, wellbore corrosion, and underground CO2 migration. The development of monitoring technologies for typical projects, at home and abroad was summarized, which can provide reference for future carbon sequestration engineering projects in China. It is difficult for a single monitoring technology to meet total engineering needs. High-precision in-situ online environmental monitoring, integrated with intelligent safety monitoring, and long-term continuous dynamic migration monitoring is expected to become future research's focus. It is suggested to build a monitoring system integrating spatial horizon and safe migration, based on high precision, low cost, and real-time monitoring.
-
[1] 胡永乐, 郝明强.CCUS产业发展特点及成本界限研究[J].油气藏评价与开发, 2020, 10(3):15-22, 2. [2] 蔡博峰, 李琦, 张贤.中国二氧化碳捕集利用与封存(CCUS)年度报告(2021):中国CCUS路径研究[R].2021. [3] 赵改善.二氧化碳地质封存地球物理监测:现状、挑战与未来发[J].石油物探, 2023, 62(2):194-1211. [4] 王建秀, 吴远斌, 于海鹏.二氧化碳封存技术研究进展[J].地下空间与工程学报, 2013, 9(1):81-90. [5] 蔡博峰.二氧化碳地质封存项目及环境监测[J].低碳世界, 2013(1):38-41. [6] 许志刚, 陈代钊, 曾荣树, 等.CO2地下埋存分布状况及环境影响的监测[J].气候变化研究进展, 2008(6):363-368. [7] 谢健, 魏宁, 吴礼舟, 等.CO2地质封存泄漏研究进展[J].岩土力学, 2017, 38(增刊1):181-188. [8] 吴江莉, 马俊杰.浅议CO2地质封存的潜在风险[J].环境科学导刊, 2012, 31(6):89-93. [9] 许志刚, 陈代钊, 曾荣树.CO2地质埋存渗漏风险及补救对策[J].地质论评, 2008(3):373-386. [10] 任韶然, 李德祥, 张亮, 等.地质封存过程中CO2泄漏途径及风险分析[J].石油学报, 2014, 35(3):591-601. [11] VIALLE S, DRUHAN J L, MAHER K.Multi-phase flow simulation of CO2 leakage through a fractured caprock in response to mitigation strategies[J].International Journal of Greenhouse Gas Control, 2016, 44:11-25. [12] 刘瑛, 王香增, 杨红, 等.CO2驱油与封存安全监测体系的构建及实践:以黄土塬地区特低渗透油藏为例[J].油气地质与采收率, 2023, 30(2):144-152. [13] 柏明星, 张志超, 白华明, 等.二氧化碳地质封存系统泄漏风险研究进展[J].特种油气藏, 2022, 29(4):1-11. [14] LI B, GUO B, LI H, et al.An analytical solution to simulate the effect of cement/formation stiffness on well integrity evaluation in carbon sequestration projects[J].Journal of Natural Gas Science Engineering, 2015, 27:1092-1099. [15] 张景富, 王宇, 徐明, 等.二氧化碳腐蚀对油井水泥石抗压强度的影响(英文)[J].硅酸盐学报, 2009, 37(4):642-647. [16] BACHU S, BENNION D B.Experimental assessment of brine and/or CO2 leakage through well cements at reservoir conditions[J].International Journal of Greenhouse Gas Control, 2009, 3(4):494-501. [17] 白云云, 师洋阳, 卢美娟, 等.双碳目标下CO2地质封存泄露途径及监测方法研究进展[J].榆林学院学报, 2021, 31(6):43-46. [18] WANG Z, SMALL M J.A Bayesian approach to CO2 leakage detection at saline sequestration sites using pressure measurements[J].International Journal of Greenhouse Gas Control, 2014, 30:188-196. [19] CIHAN A, BIRKHOLZER J T, ZHOU Q.Pressure buildup and brine migration during CO2 storage in multilayered aquifers[J].Groundwater, 2013, 51(2):252-267. [20] ALEMU B L, AAGAARD P, MUNZ I A, et al.Caprock interaction with CO2:a laboratory study of reactivity of shale with supercritical CO2 and brine[J].Applied Geochemistry, 2011, 26(12):1975-1989. [21] WOLLENWEBER J, A ALLES S, KRONIMUS A, et al.Caprock and overburden processes in geological CO2 storage:an experimental study on sealing efficiency and mineral alterations[J].Energy Procedia, 2009, 1(1):3469-3476. [22] CUI Y, BAI J, LIAO S, et al.Suggestions on the development of environmental monitoring technology of CO2 geological storage and leakage under the background of China's ‘Double-Carbon’ strategy[J].Atmosphere, 2022, 14(1):51. [23] 张士岩.考虑断层活化的CO2地质封存流体泄漏及交换机理研究[D].青岛:中国石油大学(华东), 2019. [24] RUTQVIST J, TSANG C F.A study of caprock hydromechanical changes associated with CO2 injection into a brine formation[J].Environmental Geology, 2002, 42:296-305. [25] 赵学亮, 郭建强, 史云, 等.二氧化碳地质储存动态监测研究[J].环境监控与预警, 2011, 3(6):4-7. [26] 张成龙, 郝文杰, 胡丽莎, 等.泄漏情景下碳封存项目的环境影响监测技术方法[J].中国地质调查, 2021, 8(4):92-100. [27] OLDENBURG C M, LEWICKI J L, HEPPLE R P.Near-surface monitoring strategies for geologic carbon dioxide storage verification[R].Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2003. [28] 董华松, 黄文辉.CO2捕捉与地质封存及泄漏监测技术现状与进展[J].资源与产业, 2010, 12(2):123-128. [29] 王晓桥, 马登龙, 夏锋社, 等.封储二氧化碳泄漏监测技术的研究进展[J].安全与环境工程, 2020, 27(2):23-34. [30] 周怡, 纪荣平, 胡文友, 等.我国土壤多参数快速检测方法和技术研发进展与展望[J].土壤, 2019, 51(4):627-634. [31] YAMAMOTO H, ZHANG K, KARASAKI K, et al.Large-scale numerical simulation of CO2 geologic storage and its impact on regional groundwater flow:a hypothetical case study at Tokyo Bay, Japan[J].Energy Procedia, 2009, 1(1):1871-1878. [32] 陈新新, 马俊杰, 李琦, 等.国内地质封存CO2泄漏的生态影响研究[J].环境工程, 2019, 37(2):27-34. [33] 李琦, 刘桂臻, 张建, 等.二氧化碳地质封存环境监测现状及建议[J].地球科学进展, 2013, 28(6):718-727. [34] 张琪, 崔永君, 步学朋, 等.CCS监测技术发展现状分析[J].神华科技, 2011, 9(2):77-82. [35] 李阳.碳中和与碳捕集利用封存技术进展[M].北京:中国石化出版社, 2021. [36] 田宝卿, 徐佩芬, 庞忠和, 等.CO2封存及其地球物理监测技术研究进展[J].地球物理学进展, 2014, 29(3):1431-1438. [37] 汤沭成, 林千果, 王昊, 等.黄土塬地区CO2驱油封存泄漏土壤监测体系研究[J].安全与环境工程, 2020, 27(6):112-118, 25. [38] 王昊, 林千果, 郭军红, 等.黄土塬地区CO2驱油封存泄漏地下水监测体系研究[J].环境工程, 2021, 39(8):217-226. [39] 崔振东, 刘大安, 曾荣树, 等.CO2地质封存工程的潜在地质环境灾害风险及防范措施[J].地质论评, 2011, 57(5):700-706. [40] 邓李政, 袁宏永, 张鸣之, 等.滑坡变形监测预警技术研究进展[J].清华大学学报(自然科学版), 2023, 63(6):849-864. [41] 周鑫磊, 张卫兵, 刘臻祥, 等.边坡变形和应力监测技术研究进展及展望[J].土木工程, 2022, 11(3):261-270. [42] 吴海颖, 朱鸿鹄, 朱宝, 等.基于分布式光纤传感的地下管线监测研究综述[J].浙江大学学报(工学版), 2019, 53(6):1057-1070. [43] 卢毅, 宋泽卓, 刘瑾, 等.基于DFOS的通州湾地区地面沉降监测与变形分析[J].河海大学学报(自然科学版), 2023, 51(2):81-88. [44] 范玮, 沈复孝, 刘洪涛, 等.不动管柱复合泄漏检测技术在塔里木油田的适用性分析[C]//国际石油石化技术会议暨新能源及节能技术国际会议, 线上会议, 2022. [45] 张波, 罗方伟, 孙秉才, 等.深层油气井井筒完整性检测方法[J].石油钻探技术, 2021, 49(5):114-120. [46] 潘若生.CO2驱采油井腐蚀监测技术研究[D].大庆:东北石油大学, 2015. [47] 袁曦, 肖杰, 张碧波, 等.酸性气井井筒腐蚀控制技术研究[J].石油与天然气化工, 2017, 46(1):76-78, 82. [48] 王科林, 高淑红, 杨阳, 等.油气田投捞式井筒探针腐蚀监测技术的开发及应用[J].腐蚀与防护, 2022, 43(2):58-61. [49] 徐靓, 程刚, 朱鸿鹄.基于空天地内一体化的滑坡监测技术研究[J].激光与光电子学进展, 2021, 58(9):98-111. [50] 王志岗, 周文韬.基于GPS-InSAR加权融合的矿区地表形变监测研究[J].地理空间信息, 2022, 20(11):81-84, 92. [51] 刘岩, 李隽, 王云.气藏储气库注采井井筒监测技术现状及发展方向[J].天然气技术与经济, 2016, 10(1):35-37, 82. [52] 聂畅, 陈小红, 陶玉林, 等.气井井筒常用腐蚀检测技术[J].腐蚀与防护, 2013, 34(9):856-859. [53] 赵兴雷, 崔倩, 王保登, 等.CO2地质封存项目环境监测评估体系初步研究[J].环境工程, 2018, 36(2):15-20. [54] 王容, 杨宇尧, 段希宇, 等.CO2封存地下监测评价技术[J].油气藏评价与开发, 2011, 1(4):44-46, 55. [55] ARTS R, CHADWICK A, EIKEN O, et al.Ten years' experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway[J].First break, 2008, 26(1). [56] ISAENKOV R, PEVZNER R, GLUBOKOVSKIKH S, et al.An automated system for continuous monitoring of CO2 geosequestration using multi-well offset VSP with permanent seismic sources and receivers:stage 3 of the CO2CRC Otway Project[J].International Journal of Greenhouse Gas Control, 2021, 108:103317. [57] GASPERIKOVA E, LI Y.Time-lapse electromagnetic and gravity methods in carbon storage monitoring[J].The Leading Edge, 2021, 40(6):442-446. [58] SATO K, MITO S, HORIE T, et al.Monitoring and simulation studies for assessing macro-and meso-scale migration of CO2 sequestered in an onshore aquifer:experiences from the Nagaoka pilot site, Japan[J].International Journal of Greenhouse Gas Control, 2011, 5(1):125-137. [59] CARRIGAN C, RAMIREZ A, NEWMARK R, et al.Application of ERT for tracking CO2 plume growth and movement at the SECARB Cranfield site[R].Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 2009. [60] WHITE D, DALEY T M, PAULSSON B, et al.Borehole seismic methods for geologic CO2 storage monitoring[J].The Leading Edge, 2021, 40(6):434-441. [61] XUE Z, TANASE D, WATANABE J.Estimation of CO2 saturation from time-lapse CO2 well logging in an onshore aquifer, Nagaoka, Japan[J].Exploration Geophysics, 2006, 37(1):19-29. [62] 刘贺娟, 童荣琛, 侯正猛, 等.地下流体注采诱发地震综述及对深部高温岩体地热开发的影响[J].工程科学与技术, 2022, 54(1):83-96. [63] 李义曼, 庞忠和, 李捷, 等.二氧化碳咸水层封存和利用[J].科技导报, 2012, 30(19):70-79. [64] 金显杭, 方佳伟, 王永胜, 等.咸水层CO2地质封存泄漏监测的示踪剂优选[J].天然气化工(C1化学与化工), 2020, 45(5):72-76. [65] 汤沭成.黄土塬地区CO2驱油封存泄漏地表监测体系研究[D].北京:华北电力大学(北京), 2020. [66] 刘世奇, 皇凡生, 杜瑞斌, 等.CO2地质封存与利用示范工程进展及典型案例分析[J].煤田地质与勘探, 2023, 51(2):158-174. [67] 周银邦, 王锐, 何应付, 等.咸水层CO2地质封存典型案例分析及对比[J].油气地质与采收率, 2023, 30(2):1-6. [68] FURRE A K, EIKEN O, ALNES H, et al.20 years of monitoring CO2 injection at Sleipner[J].Energy Procedia, 2017, 114:3916-3926. [69] 景炯炯.CO2油藏封存安全地表水监测和评估指标体系构建研究[D].青岛:中国石油大学(华东), 2016. [70] 马劲风, 李琳, 魏旭旺, 等.CO2地质封存中的四维地震技术以加拿大Weyburn油田为例[C]//资源与灾害地球物理论坛, 西安, 2011. [71] RINGROSE P, MATHIESON A, WRIGHT I, et al.The In Salah CO2 storage project:lessons learned and knowledge transfer[J].Energy Procedia, 2013, 37:6226-6236. [72] 赵兴雷, 马瑞, 李国涛, 等.神华咸水层CO2封存监测安全评价体系的研究[J].化工进展, 2016, 35(增刊2):389-395.
点击查看大图
计量
- 文章访问数: 314
- HTML全文浏览量: 24
- PDF下载量: 10
- 被引次数: 0