GREENHOUSE GAS N2O EMISSIONS IN CHEMICAL PRODUCTION AND INDUSTRIAL ABATEMENT TECHNOLOGIES
-
摘要: N2O作为第三大人为排放温室气体,可造成臭氧层破坏并加剧气候变暖,是化工生产中的污染物之一。己二酸和硝酸生产过程中排放了大量N2O,一直被认为是化学工业中N2O的主要排放源。然而在化工领域内,N2O的排放并不仅限于硝酸和己二酸生产过程,因其他化工生产中N2O排放浓度低,没有明确排放标准和监测方法等问题,N2O排放一直被有所忽视。通过系统阐明化工生产流程中已明确存在的N2O排放及N2O产生机制,拓展讨论了化工行业中尚未被关注的N2O排放问题。通过总结生产工艺的N2O排放原因和N2O生成机制,推测了其他可能存在N2O排放的化工工艺流程。此外,还介绍了工业上已采用的N2O减排技术及其存在的问题,结合不同减排技术特点,分析说明工业实践中N2O减排效果和当前的发展的困境,给出了N2O减排技术未来研究的重点,以期为人类生产活动中N2O有效控制和减排工作目标提供参考依据和实践方向。Abstract: Nitrous oxide(N2O), the third largest anthropogenic emissive greenhouse gas, can cause ozone layer depletion and contribute to climate warming, and is one of the pollutants generated in chemical production. Adipic acid and nitric acid production produce large amounts of N2O, which have been considered as main sources of N2O emission in the chemical industry. However, the sources of N2O emission are not limited to the nitric and adipic acid production processes. Due to low concentrations of N2O emissions, no clear emission standards or monitoring methods, some other chemical processes have been neglected. This paper systematically elucidated the existence of N2O emission sources and the mechanisms of N2O generation in the chemical production processes, and clarified the N2O emission problems that have not yet received much attention in the chemical industry. Moreover, by summarizing the causes of N2O emission and mechanisms of N2O formation during those well-known processes, this paper speculated on other processes with potential N2O emission. Additionally, this paper introduced the N2O abatement technologies and corresponding problems that have been applied in the industry. Analyzed the effect of N2O emission reduction in industrial applications and the current development predicament combined with the evaluation of abatement technologies, and proposed the future research focus of N2O emission reduction technologies. To provide a reference and practical direction for the effective control and emission reduction of N2O in human production activities.
-
Key words:
- greenhouse gases /
- N2O emission /
- nitration /
- NH3 /
- emission reduction technologies
-
[1] 杨波, 沈岳松, 祝社民.催化分解N2O催化剂的研究新进展[J].环境工程, 2012, 30(2):114-119. [2] XU Y, RAMANATHAN V.Well below 2℃:Mitigation strategies for avoiding dangerous to catastrophic climate changes[J].Proceedings of the National Academy of Sciences, 2017, 114(39):10315-10323. [3] JOHN C K, WILLIAM P L.Nitrous oxide behavior in the atmosphere, and in combustion and industrial systems[J].Progress in Energy & Combustion Science, 1994, 20(2):149-202. [4] Working Groups-IPCC.2021.Available online:https://www.ipcc.ch/working-groups/(accessed on 23 February 2021). [5] UDAYAN S, MIKAELA A, CARRIE S, et al.Technological avenues and market mechanisms to accelerate methane and nitrous oxide emissions reductions[J].iScience, 2022, 25(12):105661. [6] WILFRIED W, LENA H, ZBIGNIEW K, et al.Technical opportunities to reduce global anthropogenic emissions of nitrous oxide[J].Environmental Research Letters, 2018, 13(1):014011. [7] 王沁意, 盛扬悦, 宋宁宁, 等.污水处理过程CH4与N2O排放监测研究进展[J/OL].环境工程.https://kns.cnki.net/kcms2/detail/11.2097.X.20230628.1823.006.html. [8] MAREK A W, JAN R P, JACOB A M.Combustion of coal as a source of N2O emission[J].Fuel Processing Technology, 1993, 34(1):1-71. [9] RUI F, XUE K F.Devoting Attention to China's Burgeoning Industrial N2O Emissions[J].Environmental Science & Technology, 2022, 56(9):5299-5301. [10] CASTELLAN A, BART J, CAVALLARO S.Industrial production and use of adipic acid[J].Catalysis Today, 1991, 9(3):237-254. [11] ZHANG Y Y, FENG Y Y.Investigation on Catalytic N2O Conversion to NO for Potential Nitric Acid Production from Industrial Waste Gas[J].IOP Conference Series:Earth and Environmental Science, 2021, 793(1):012010. [12] LAMBERT S, MICHAEL L, ANJA K.Industrial N2O Projects Under the CDM:Adipic Acid-A Case of Carbon Leakage?[J].SEI, Working Paper WP-US-1006, 2010. [13] 龚旭鹏, 王东.己二酸生产工艺的研究及改进措施[J].煤炭与化工, 2021, 44(12):122-125. [14] 董菲菲, 许小军.己二酸生产中"三废"的产生与处理[J].河南化工, 2015, 32(7):11-13. [15] 江屿, 徐烨琨, 艾晓欣.己二酸生产中N2O减排技术综述[J].化工设计通讯, 2018, 44(9):56-57. [16] 于泳, 王亚涛.己二酸尾气中N2O处理技术进展[J].工业催化, 2016, 24(7):17-20. [17] 张昌会, 姚鑫.己二酸工业生产尾气温室气体治理路径分析与发展趋势[J].河南化工, 2022, 39(9):12-14. [18] 潘利新.黑化集团CDM项目硝酸尾气N2O和NO、NO2的联合脱除工艺[J].辽宁化工, 2014, 43(7):940-942. [19] FRUTOS OD, QUIJANO G, AIZPURU A, et al.A state-of-the-art review on nitrous oxide control from waste treatment and industrial sources[J].Biotechnology Advances, 2018, 36(4):1025-1037. [20] PÉREZ-RAMÍREZ J, KAPTEIJN F, SCHÖFFEL K, et al.Formation and control of N2O in nitric acid production[J].Applied Catalysis B:Environmental, 2003, 44(2):117-151. [21] LI L, XU J, HU J, et al.Reducing Nitrous Oxide Emissions to Mitigate Climate Change and Protect the Ozone Layer[J].Environmental Science & Technology, 2014, 48(9):5290-5297. [22] 田涛, 孙志斌, 崔明慧.石化生产过程工艺温室气体排放分析及量化研究[J].石油石化节能与减排, 2015, 5(4):14-20. [23] 董继龙, 魏建伟, 王红琴, 等.我国己内酰胺合成技术研究进展及市场分析[J].化工新型材料, 2020, 48(S1):24-27. [24] 张智勇.乙醛氧化制备乙二醛的反应和分离过程研究[D].天津:天津大学, 2010. [25] 李建生, 董广前, 宋海燕.固体乙醛酸清洁生产新工艺[J].精细与专用化学品, 2003(19):21-22. [26] 刘东凯, 强军飞.浅析乙醛酸现有合成技术研究现状[J].石河子科技, 2022(2):13-14. [27] 孙德兴.丙烯-丙烯腈-己二腈-HDI链条技术浅析[J].广东化工, 2021, 48(15):140-141. [28] TETSUYA N, SHOUICHI M, JUNKO U, et al.Mechanism of acrylonitrile decomposition over Cu-ZSM-5[J].Journal of Molecular Catalysis A Chemical, 2007, 276(1/2):130-136. [29] 王英, 梁丽, 黄逸心, 等.二硝基甲苯的生产工艺和合成应用[J].辽宁化工, 2018, 47(11):1113-1115. [30] 吴昊, 褚云, 王如君, 等.硝化工艺本质安全化探索[J].中国安全生产科学技术, 2021, 17(增刊1):86-89. [31] 田川克志, 三浦功慈, 儿玉庄平, 等.防止地球温室化用的方法及其装置:CN1280519A[P].2001-01-17. [32] R·A·莱马, C·S·施莱顿.一种由含N2O的气流分解生成NO的方法:CN1045277C[P].1999-09-29. [33] KEN-ICHI A, KENZO O.Nitrous oxide reduction with ammonia over Co-MgO catalyst and the influence of excess oxygen[J].Catalysis Today, 1996, 29(1/2/3/4):123-126. [34] ZHAO L, WANG H X, XU M X, et al.Simultaneous removal of NO and N2O over commercial V2O5-MoO3/TiO2 catalyst modified with bismuth-nickel oxides[J].Applied Catalysis A:General, 2021, 625:118336. [35] ZHANG X Y, SHEN Q, HE C, et al.Investigation of Selective Catalytic Reduction of N2O by NH3 over an Fe-Mordenite Catalyst:reaction Mechanism and O2 Effect[J].ACS Catalysis, 2012, 2(4):512-520. [36] CHENG J, ZHENG D H, YU G Q, et al.N2O Catalytic Decomposition and NH3-SCR Coupling Reactions over Fe-SSZ-13 Catalyst:mechanisms and Interactions Unraveling via Experiments and DFT Calculations[J].ACS Catalysis, 2023, 13(2):934-947. [37] ZENG J, WANG Y Z, DIAO F, et al.Selective catalytic reduction of N2O by CO over Fe-Beta zeolites catalysts:influence of iron species distribution[J].Catalysis Surveys from Asia, 2021, 25(1):58-67. [38] 赵菲琳, 曾洁, 校融, 等.镧掺杂Fe-beta分子筛CO选择性催化还原N2O反应性能[J].中国环境科学, 2023, 43(3):1044-1052. [39] YOU Y C, CHEN S Y, LI J Y, et al.Low-temperature selective catalytic reduction of N2O by CO over Fe-ZSM-5 catalysts in the presence of O2[J].Journal of Hazardous Materials, 2020, 383:121117. [40] KAMEOKA S, KITA K, TAKEDA T, et al.Simultaneous removal of N2O and CH4 as the strong greenhouse-effect gases over Fe-BEA zeolite in the presence of excess O2[J].Catalysis Letters, 2000, 69:169-173. [41] TAKESHI N, MASANORI Y, SATOSHI K, et al.In-Situ Observation of Reaction Intermediate in the Selective Catalytic Reduction of N2O with CH4 over Fe Ion-Exchanged BEA Zeolite Catalyst for the Elucidation of Its Reaction Mechanism Using FTIR[J].The Journal of Physical Chemistry B, 2004, 108(13):4071-4079. [42] MICHAEL C E G, ALEXANDER S.Uhde EnviNOx® technology for NOx and N2O abatement:a contribution to reducing emissions from nitric acid plants[J].Journal of Integrative Environmental Sciences, 2010, 7(增刊1):211-222. [43] 李飞, 黄伟, 李潇, 等.硝酸或己二酸行业氧化亚氮直接催化分解技术研究进展及现状[J].工业催化, 2018, 26(9):6-10. [44] 王莉莉.淮化CDM项目实施和小结[J].化工设计通讯, 2012, 38(1):79-81. [45] 程火生.辽阳石化己二酸生产中N2O减排技术应用研究[D].北京:清华大学, 2010. [46] 吴小强, 严会成, 许云波, 等.SCST-102型N2O炉内减排催化剂的开发与工业应用[J].中氮肥, 2021(3):37-41.
点击查看大图
计量
- 文章访问数: 168
- HTML全文浏览量: 5
- PDF下载量: 8
- 被引次数: 0