ANALYSIS OF CARBON REDUCTION EFFECT OF TUNNEL CONSTRUCTION MUCK SOIL UTILIZATION BASED ON LIFE CYCLE ASSESSMENT
-
摘要: 渣土利用已成为盾构绿色施工的关键措施之一,为进一步量化隧道盾构渣土资源化利用的碳减排潜力,通过构建隧道盾构渣土经改良后进行路基填筑的全过程碳排放估算方法,利用季华路西延线过顺德水道隧道工程实际工程数据,对比分析了渣土再利用与常规堆填处理的碳排放差异,并对渣土利用全过程碳排放进行了敏感性分析。结果表明:渣土利用碳排放主要发生在渣土改良运输阶段,常规填埋处理主要应用于产生阶段;顺德水道过江隧道工程的总排渣量约为65029 m3,其中可用来进行渣土改良的排渣量为53162 m3,若全部进行填埋处理,则全生命周期的CO2排放量约为1.84×106 kg CO2eq,占用11058 m2的填埋场地;经3%石灰+3%脱硫石膏改良后的渣土CBR值可达到141.4,回弹模量为198.8 MPa,全过程产生的CO2比渣土常规处理产生的CO2增加了8.89×105 kg CO2eq;经3%电石渣+6%粉煤灰改良后的渣土CBR值可达到89.06、回弹模量为158.9 MPa,全过程产生的CO2比渣土常规处理产生的CO2减少了6.44×105 kg CO2eq。Abstract: The utilization of muck soil has become one of the key tasks in green shield construction. In order to further quantify the carbon emission reduction potential of the resource utilization of the muck soil from tunnel shield construction, the carbon emission estimation method for the whole process of subgrade filling with improved muck soil from tunnel shield construction was established. Based on the actual engineering data of the Shunde Waterway Tunnel Project of the West Extension Line of Jihua Road, the difference in carbon emissions between the utilization of muck soil and conventional landfill treatment was analyzed. In addition, the sensitivity analysis of carbon emissions in the whole process of residue utilization was also carried out. The results showed that:carbon emissions from the utilization of muck soil mainly occur in the muck soil improvement and transportation stage, while those of the conventional landfill treatment mainly occur in the generation stage; the total discharge of muck soil from the Project is about 65029 m3, of which 53162 m3 can be used for muck soil improvement. If totally landfilled, the CO2 emission during the whole life cycle is about 1.84×106 kg CO2eq, occupying 11058 m2 of landfill site; the CBR of muck soil improved by 3% lime+3% desulfurized gypsum can reach 141.4, and the rebound modulus is 198.8 MPa. The CO2 produced in the whole process is 8.89×105 kg CO2eq more than that produced by conventional treatment of muck soil; the CBR of muck soil improved by 3% carbide slag+6% fly ash can reach 89.06, and the rebound modulus is 158.9 MPa. The CO2 produced in the whole process is 6.44×105 kg CO2eq less than that produced by conventional treatment of muck soil.
-
Key words:
- shield tunnel /
- muck soil utilization /
- life cycle assessment /
- carbon emission reduction
-
[1] 惠明珠, 苏有文.中国建筑业碳排放效率空间特征及其影响因素[J].环境工程, 2018, 36(12):182-187. [2] 陈蕊, 杨凯, 肖为, 等.工程渣土的资源化处理处置分析[J].环境工程, 2020, 38(3):22-26. [3] 陈坤阳, 王家远, 喻博, 等.地铁工程余泥渣土环境影响研究[J].环境工程, 2022, 40(2):191-198. [4] DING Z K, ZHU M L, TAM V W Y, et al.A system dynamics-based environmental benefit assessment model of construction waste reduction management at the design and construction stages[J].Journal of Cleaner Production, 2018, 176:676-692. [5] 高杨, 卫童瑶, 李滨, 等.深圳"12·20"渣土场远程流化滑坡动力过程分析[J].水文地质工程地质, 2019, 46(1):129-138, 147. [6] LI J R, LIANG J L, ZUO J, et al.Environmental impact assessment of mobile recycling of demolition waste in Shenzhen, China[J].Journal of Cleaner Production, 2020, 263:121371. [7] 郭卫社, 王百泉, 李沿宗, 等.盾构渣土无害化处理、资源化利用现状与展望[J].隧道建设(中英文), 2020, 40(8):1101-1112. [8] 姚清松, 蔡坤坤, 刘超, 等.粉质黏土地层基坑渣土免烧砖配比及力学性能研究[J].隧道建设(中英文), 2020, 40(增刊1):145-151. [9] ZHOU S H, LI X, JI C, et al.Back-fill grout experimental test for discharged soils reuse of the large-diameter size slurry shield tunnel[J].KSCE Journal of Civil Engineering, 2016, 21(3):725-733. [10] 刘慧刚, 丁建文, 吉锋, 等.南京江底盾构施工废弃砂土在同步注浆中再利用的适用性[J].土木与环境工程学报(中英文):1-10. [11] XU J, XIAO C, WU H N, et al.Reuse of excavated clayey silt in cement-fly ash-bentonite hybrid back-fill grouting during shield tunneling[J].International journal of applied mechanics, 2020, 12(3).doi: 10.3390/su12031017. [12] 朱瑜星, 卞怡, 闵凡路, 等.地铁盾构渣土改良为流动化土进行应用试验研究[J].土木工程学报, 2020, 53(增刊1):245-251. [13] 张亚洲, 夏鹏举, 魏代伟, 等.南京纬三路过江通道泥水处理及全线路废弃土再利用技术[J].隧道建设, 2015, 35(11):1229-1233. [14] 赵丽君, 朱挻, 刘泽, 等.绍兴市工程渣土路用性能改良研究[J].工程技术研究, 2021, 6(16):6-8. [15] 翟一杰, 张天祚, 申晓旭, 等.生命周期评价方法研究进展[J].资源科学, 2021, 43(3):446-455. [16] 陈坤阳, 周鼎, 粟月欢, 等.城市轨道交通生命周期碳排放强度与碳减排潜力研究[J].铁道标准设计, 2022, 66(5):1-7. [17] 罗平滢.建筑施工碳排放因子研究[D].广州:广东工业大学, 2016. [18] 毛睿昌.基于LCA的城市交通基础设施环境影响分析研究[D].深圳:深圳大学, 2017. [19] 黄桐, 寇世聪, 赵玉龙, 等.日本余泥渣土管理经验与启示[J].环境卫生工程, 2020, 28(5):61-67. [20] 王月玲, 涂柯帆, 严婉婷, 等.地铁渣土的资源化利用[J].化学工程与装备, 2022(5):278-279.
点击查看大图
计量
- 文章访问数: 93
- HTML全文浏览量: 5
- PDF下载量: 7
- 被引次数: 0