中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄土隧道施工阶段碳排放计算与分析

王琳 杨木言 高钰强

王琳, 杨木言, 高钰强. 黄土隧道施工阶段碳排放计算与分析[J]. 环境工程, 2023, 41(10): 99-107,172. doi: 10.13205/j.hjgc.202310013
引用本文: 王琳, 杨木言, 高钰强. 黄土隧道施工阶段碳排放计算与分析[J]. 环境工程, 2023, 41(10): 99-107,172. doi: 10.13205/j.hjgc.202310013
WANG Lin, YANG Muyan, GAO Yuqiang. CALCULATION AND ANALYSIS OF CARBON EMISSION IN CONSTRUCTION STAGE OF LOESS TUNNEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 99-107,172. doi: 10.13205/j.hjgc.202310013
Citation: WANG Lin, YANG Muyan, GAO Yuqiang. CALCULATION AND ANALYSIS OF CARBON EMISSION IN CONSTRUCTION STAGE OF LOESS TUNNEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 99-107,172. doi: 10.13205/j.hjgc.202310013

黄土隧道施工阶段碳排放计算与分析

doi: 10.13205/j.hjgc.202310013
详细信息
    作者简介:

    王琳(1978-),女,硕士,副教授,主要从事铁路工程管理和可持续建造与管理研究工作。58835455@qq.com

    通讯作者:

    杨木言(1999-),女,硕士研究生,主要研究方向为隧道低碳施工。1341259084@qq.com

CALCULATION AND ANALYSIS OF CARBON EMISSION IN CONSTRUCTION STAGE OF LOESS TUNNEL

  • 摘要: 为提供黄土隧道施工阶段碳排放数据,寻求黄土隧道碳减排路径,助力实现黄土隧道低碳建设,开展黄土隧道施工阶段碳排放计算与分析意义重大。以SJ黄土隧道为研究对象,采用生命周期评价理论计算施工阶段碳排放,从碳排放源、时间和空间3个层面分析并总结了黄土隧道施工阶段碳排放特点,提出了黄土隧道施工阶段碳减排建议。结果表明:1) SJ黄土隧道施工阶段碳排放为267.69万t,碳排放强度为60.16 t CO2eq/m;2)材料生产与加工阶段碳排放最高,水泥和钢筋是黄土隧道关键碳排放源,二次衬砌、围岩支护、临时支护是施工阶段碳排放排前3的分部工程;3)黄土隧道碳排放强度高于岩石隧道,两种隧道材料能源、分部工程的碳排放分布情况类似。
  • [1] LIU Y Y, WANG Y Q, LI D, et al.Life cycle assessment for carbon dioxide emissions from freeway construction in mountainous area:primary source, cut-off determination of system boundary[J].Resources Conservation & Recycling, 2019, 140:36-44.
    [2] 交通运输部.2022年交通运输行业发展统计公报[EB/OL].https://xxgk.mot.gov.cn/2020/jigou/zhghs/202306/t20230615

    _3847023.html.
    [3] RODRÍGUEZ R, PÉREZ F.Carbon foot print evaluation in tunneling construction using conventional methods[J].Tunnelling and Underground Space Technology, 2021, 108:103704.
    [4] SUN H, PARK Y.CO2 emission calculation method during construction process for developing BIM-based performance evaluation system[J].Applied Sciences, 2020, 10(16):5587.
    [5] 郭春, 郭亚林, 陈政.交通隧道工程碳排放核算及研究进展分析[J].现代隧道技术, 2023, 60(1):1-10.
    [6] 李伟, 陈刚, 曹太波, 等.地铁盾构渣土利用与处置碳排放强度与减碳潜力研究[J].环境工程, 2023, 41(7):53-60.
    [7] MAHMOOD A, VARABUNTOONVIT V, MUNGKALASIRI J, et al.A tier-wise method for evaluating uncertainty in life cycle assessment[J].Sustainability, 2022, 14(20):1-9.
    [8] 徐丽笑, 王亚菲.我国城市碳排放核算:国际统计标准测度与方法构建[J].统计研究, 2022, 39(7):12-30.
    [9] YANG Y, HEIJUNGS R, BRANDAO M.Hybrid life cycle assessment (LCA) does not necessarily yield more accurate results than process-based LCA[J].Journal of Cleaner Production, 2017, 150(MAY1):237-242.
    [10] UNFCCC.Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC)[J].FCCC/CP/1997/L.7/Add.1, 1997.
    [11] 王梦林, 程梦雨, 康皓, 姜立.变电建筑碳排放计算方法研究与低碳案例实践[J].智能建筑与智慧城市, 2023(4):98-100.
    [12] 张孝存.建筑碳排放量化分析计算与低碳建筑结构评价方法研究[D].哈尔滨:哈尔滨工业大学, 2018.
    [13] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局.建筑碳排放计算标准:GB/T 51366-2019[S].北京:中国建筑工业出版社, 2019.
    [14] 汪慧颖.广西高速公路建设期碳排放计算及预测研究[D].南宁:广西大学, 2022.
    [15] 龚志起, 张智慧.水泥生命周期中物化环境状况的研究[J].土木工程学报, 2004, 37(5):86-91.
    [16] 黄旭辉.地铁土建工程物化阶段碳排放计量与减排分析[D].广州:华南理工大学, 2019.
    [17] 粟月欢, 张宇, 段华波, 等.地铁建设环境影响评估及减排效益研究:以深圳市为例[J].环境工程, 2022, 40(5):184-192

    , 236.
    [18] SHAN Y, GUAN D, ZHENG H, et al.Data Descriptor:China CO2 emission accounts 1997-2015[J].Scientific DATA, 2018.
    [19] LIU M H, JIA S Y, HE X T.A quota-based GHG emissions quantification model for the construction of subway stations in China[J].Journal of Cleaner Production, 2018, 198:847-858.
    [20] LLOYD S M, RIES R.Characterizing, propagating, and analyzing uncertainty in life-cycle assessment:a survey of quantitative approaches[J].Journal of Industrial Ecology, 2007, 11(1):161-179.
    [21] ANSAH M K, CHEN X, YANG H X, et al.Developing a tier-hybrid uncertainty analysis approach for lifecycle impact assessment of a typical high-rise residential building[J].Resources Conservation and Recycling, 2021, 167:105424.
    [22] KHAN S A, ALAM T, KHAN M S, et al.Life cycle assessment of embodied carbon in buildings:background, approaches and advancements[J].Buildings, 2022, 12(11):1944.
    [23] YU B, LIU Q, GU X Y, et al.Data quality and uncertainty assessment methodology for pavement LCA[J].International Journal of Pavement Engineering, 2018, 19(516):519-525.
    [24] YOO W, OZER H, HAM Y.System-level approach for identifying main uncertainty sources in pavement construction life-cycle assessment for quantifying environmental impacts[J].Journal of Construction Engineering & Management, 2019, 145(2):04018137.
    [25] 王贤卫, 吴灵生, 杨东援.高速公路建设CO2排放计算分析[J].公路交通科技, 2014, 31(2):150-158.
    [26] 郭春, 徐建峰, 张佳鹏.隧道建设碳排放计算方法及预测模型[J].隧道建设(中英文), 2020, 40(8):1140-1146.
    [27] XU J F.Influence of lining design parameters on the greenhouse gas emissions of chinese highway tunnel construction[J].Transportation Research Record, 2021, 2675(11):685-698.
    [28] XU J F, GUO C, CHEN X F, et al.Emission transition of greenhouse gases with the surrounding rock weakened:a case study of tunnel construction[J].Journal of Cleaner Production, 2019, 209(FEB.1):169-179.
    [29] SEO Y, KIM S M.Estimation of materials-induced CO2 emission from road construction in Korea[J].Renewable & Sustainable Energy Reviews, 2013, 26:625-631.
    [30] HUANG L Z, BOHNE R A, BRULAND A, et al.Life cycle assessment of Norwegian road tunnel[J].The International Journal of Life Cycle Assessment, 2015, 20(2):174-184.
  • 加载中
计量
  • 文章访问数:  117
  • HTML全文浏览量:  22
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-23
  • 网络出版日期:  2023-12-26

目录

    /

    返回文章
    返回