ANALYSIS OF CARBON EMISSION CHARACTERISTICS AND CARBON REDUCTION POTENTIAL OF CAMPUS BUILDING OPERATION BASED ON STIRPAT MODEL
-
摘要: 为发挥高校在碳中和行动中的先导作用,率先实现校园碳中和,基于能源监控中心数据,测算2017—2021年江西某高校建筑运行阶段碳排放,构建校园建筑运行碳排放STIRPAT模型,结合情景分析法设定基准、低碳和超低碳3种发展情景,预测2022—2035年校园建筑运行碳排放的变化趋势,并提出针对性的减碳建议。结果表明:校园建筑碳排放呈现显著的季节性特征,宿舍碳排放是校园建筑运营阶段碳排放的主要来源,以功能性碳排放为主;能源结构和能耗强度对碳排放的影响较大,用能人数和建筑面积的影响相对较小;在低碳情景下和超低碳情景下,均能在2030年前实现碳达峰。Abstract: In order to promote the leading role of campus in carbon neutralization action and take the lead in realizing campus carbon neutralization, based on the data of energy monitoring center, the carbon emission of a university building in Jiangxi Province from 2017 to 2021 was measured, the STIRPAT model of carbon emission of campus building operation was constructed, and three scenarios of baseline scenarios, low carbon scenarios and ultra-low carbon scenarios were set by scenario analysis method, to forecast the changing trend of carbon emission of campus building operation phase from 2022 to 2035, and targeted carbon reduction suggestions were put forward. Results showed that the carbon emissions of campus buildings showed significant seasonal characteristics. Dormitory carbon emissions were the main source of carbon emissions in the operation stage of campus buildings, mainly functional carbon emissions. Energy structure and energy consumption intensity had a greater impact on carbon emissions, while the number of energy users and building area had a relatively smaller impact. Under both low-carbon scenario and ultra-low-carbon scenario, the carbon peak in the campus can all be achieved before 2030.
-
Key words:
- campus building /
- operation phase /
- STIRPAT model /
- scenario analysis /
- carbon reduction potential
-
[1] 中国建筑节能协会.2021中国建筑能耗与碳排放研究报告[R].2022. [2] 周侠.重庆大学校园碳平衡研究[D].重庆:重庆大学, 2015. [3] 丁轶光.北京建筑大学西城校区碳足迹核算及减排策略研究[D].北京:北京建筑大学, 2015. [4] 张晨悦.山东建筑大学碳排放计算研究[D].济南:山东建筑大学, 2016. [5] 吴欣, 刘熠娜, 任宜欣, 等.高校碳足迹指标体系核算及减排策略研究:以西北大学为例[J].环境科学与技术, 2019, 42(增刊1):187-193. [6] CLABEAUX R, CARBAJALES-DALE M, LADNER D, et al.Assessing the carbon footprint of a university campus using a life cycle assessment approach[J].Journal of Cleaner Production, 2020, 273:122600. [7] 曹睿, 封莉, 张立秋.高校碳排放核算与分析:以北京A高校为例[J/OL].环境科学:1-18[2023-11-13].https://doi.org/10.13227/j.hjkx.202305013. [8] 刘菁, 赵静云.基于系统动力学的建筑碳排放预测研究[J].科技管理研究, 2018, 38(9):219-226. [9] 赵红岩, 霍正刚, 查晓庭, 等.建筑碳排放影响因素分析及情景预测[J].扬州大学学报(自然科学版), 2022, 25(6):65-70. [10] 曲鲁平, 翟腾腾, 张全景.基于灰色理论模型的山东省土地利用碳排放研究[J].山东农业大学学报(自然科学版), 2019, 50(2):290-296. [11] 张巍.基于STIRPAT模型的西安市碳足迹预测和情景分析[J].生态经济, 2021, 37(4):25-29. [12] 王京京, 卫佳佳.时间序列下北京市建筑运行碳排放变化特征与情景模拟[J].北京工业大学学报, 2022, 48(3):220-229. [13] 张孝存, 王凤来.建筑工程碳排放计量[M].北京:机械工业出版社, 2022. [14] 郭文栋, 梁雪石, 郑福云, 等.黑龙江省火力发电企业二氧化碳排放核算及趋势浅析[J].国土与自然资源研究, 2023(1):29-31. [15] YORK R, ROSA Ea, DIETZ T.STIRPAT, IPAT and ImPACT:analytic tools for unpacking the driving forces of environmental impacts[J].Ecological Economics, 2003, 46:351-365. [16] 黄纬, 温志萍, 程初.云计算中基于K-均值聚类的虚拟机调度算法研究[J].南京理工大学学报, 2013, 37(6):807-812. [17] 马宇恒.东北地区2030年碳排放达峰路径研究[D].长春:吉林大学, 2018. [18] 张哲, 任怡萌, 董会娟.城市碳排放达峰和低碳发展研究:以上海市为例[J].环境工程, 2020, 38(11):12-18.
点击查看大图
计量
- 文章访问数: 159
- HTML全文浏览量: 6
- PDF下载量: 4
- 被引次数: 0