CARBON EMISSIONS OF URBAN AND INDUSTRIAL SEWAGE TREATMENT PLANTS OF SUZHOU
-
摘要: 在“十四五”减污降碳协同增效的关键时期,污水处理系统面临着碳排放核算准确性、时效性低和缺少有效的分析评价工具的问题。基于苏州市2001—2020年城镇和工业污水处理厂不同工艺的污染物削减比例,加权建立了本地化碳排放因子和碳排放量的时序数据,并构建污水处理系统碳排放拓展Kaya恒等式因素分解模型,定量分析技术效应、能源效应、污水排放强度、产业结构、经济效应、城镇化率和人口规模7个因素对污水处理厂碳排放变化的影响。研究发现,苏州市2001—2020年污水处理系统碳排放量为4306.6082万t CO2eq,CO2为主要贡献者,碳排放因子为1.3687~1.9499 kg CO2eq/m3;降低污水处理工序的CO2排放和污泥处置工序的N2O排放是降碳工作的关键;经济和人口规模效应分别是城镇和工业污水处理厂碳排放增量促进的主要因素,技术效应是减量抑制的决定性因素。最后提出城镇污水处理厂碳排放降速、污水低耗能和污泥低N2O排放技术提升、推进全社会节水、科技创新促进产业升级等建议措施。Abstract: In the critical period of synergy between pollution reduction and carbon reduction in the 14th Five-Year Plan, the sewage treatment system is facing the problems of low accuracy and timeliness of carbon accounting, and the lack of effective analysis and evaluation tools for carbon emissions. Based on the pollutant reduction ratio of different processes of urban and industrial sewage treatment plants in Suzhou from 2001 to 2020, the time series data of localized carbon emission factors and carbon emissions were weighted and established. An extended Kaya identity factorization model of carbon emission in sewage treatment systems is constructed to quantitatively analyze the influence of seven factors, including technical effect, energy effect, sewage discharge intensity, industrial structure, economic effect, urbanization rate, and population size, on the change of carbon emission in sewage treatment plants. The study showed that carbon emissions of the sewage treatment system in Suzhou from 2001 to 2020 were 4306.6082 million tons of CO2-eq, CO2 was the main contributor, and the carbon emission factor was 1.3687~1.9499 kg CO2-eq/m3; reducing CO2 emissions from the sewage treatment process, and N2O emissions from the sludge disposal process was the breakthrough point; the economy and population scale effects were the main factors to promote the carbon emission increment of urban and industrial sewage treatment plants, respectively, and the technical effect was the decisive factor to restrain the reduction. Finally, suggestions are put forward, including the reduction of carbon emission in urban sewage treatment plants, the improvement of low energy consumption of sewage and low N2O emission technology of sludge, the promotion of water saving in the whole society, and the promotion of industrial upgrading by technological innovation.
-
Key words:
- sewage treatment plant /
- carbon emissions /
- Kaya identity /
- CH4 /
- N2O
-
[1] 中国气象局气候变化中心.中国气候变化蓝皮书(2022)[M].北京:科学出版社, 2022. [2] 中华人民共和国生态环境部.减污降碳协同增效实施方案[EB/OL].https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202206/t20220617_985879.html.2022-6-10. [3] 江苏省人民政府.江苏省碳达峰实施方案[EB/OL].http://3060.xujc.com/2023/0221/c6642a143402/page.htm.2022-10-3. [4] 中华人民共和国生态环境部.全国污水集中处理设施清单(第二批)[EB/OL].https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202011/t20201123_809271.html.2020-11-17. [5] 张星.城镇生活污水处理系统碳排放研究[D].南京:南京信息工程大学, 2018. [6] 王金鹤.城镇污水处理厂中温室气体的释放研究[D].济南:山东大学, 2011. [7] 邱德志, 陈纯, 郭丽, 等.基于排放因子法的中国主要城市群城镇污水厂温室气体排放特征[J].环境工程, 2022, 40(6):116-122. [8] 闫旭, 邱德志, 郭东丽, 等.中国城镇污水处理厂温室气体排放时空分布特征[J].环境科学, 2018, 39(3):1256-1263. [9] 张成.重庆市城镇污水处理系统碳排放研究[D].重庆:重庆大学, 2011. [10] 任福民, 毛联华, 阜葳, 等.中国城镇污水处理厂运行能耗影响因素研究[J].给水排水, 2015, 51(1):42-47. [11] FOLEY J, YUAN Z, KELLER J, et al.N2O and CH4 emission from wastewater collection and treatment systems:state of the science report and technical report[M].London:IWA Publishing, 2015. [12] 石春力, 田永英, 黄海伟, 等.我国城镇污水处理碳排放核算方法研究综述[J].建设科技, 2021(11):39-43. [13] TANG M G, YANG Q F, PAN C Y, et al.Driving forces of industrial water pollutant emission from spatial-dynamic perspective in china:analysis based on Kaya equation and LMDI decomposition[J].Open Journal of Social Sciences, 2019, 7(10):132-143. [14] 齐漫, 陈昆仑, 丁镭, 等.中国省域生活废水排放量的时空分布特征及驱动因素分析[J].地理与地理信息科学, 2016, 32(4):106-112. [15] 蔡博峰, 高庆先, 李中华, 等.中国城市污水处理厂甲烷排放因子研究[J].中国人口·资源与环境, 2015, 25(4):118-124. [16] 李莎.城市污水四种典型处理工艺N2O排放特征的研究[D].北京:北京林业大学, 2012. [17] 李乔洋.基于碳减排分析的我国城镇污泥处置现状及发展趋势研究[D].哈尔滨:哈尔滨工业大学, 2020. [18] 杨世琪.城镇污水处理系统碳核算方法与模型研究[D].重庆:重庆大学, 2013. [19] 杨淦翔, 万莉, 王航, 等.污水处理厂能耗分析及节能降耗的措施与应用[J].资源节约与环保, 2021(10):12-14. [20] CAKIR F Y, STENSTROM M K.Greenhouse gas production:a comparison between aerobic and anaerobic wastewater treatment technology[J].Water Res, 2005, 39(17):4197-4203. [21] 张辰, 陈嫣, 谭学军, 等.城市污水系统温室气体排放与对策研究[J].给水排水, 2010, 46(9):29-33. [22] SOLOMON S.Climate change 2007:the physical science basis[M].Cambridge:Cambridge University Press, 2007. [23] 齐香汝, 熊焱, 金文杰, 等.国内城镇污水处理能耗计算方法[J].辽宁科技大学学报, 2015, 38(2):155-160. [24] 孙越.生活垃圾填埋气体释放特征及收集效率研究[D].沈阳:沈阳航空航天大学, 2014. [25] 郝晓地, 涂明, 蔡正清, 等.污水处理低碳运行策略与技术导向[J].中国给水排水, 2010, 26(24):1-6. [26] 张秀清.环境规制与碳排放量的实证分析[J].商, 2015(25):90-91. [27] KAYA Y.Impact of Carbon Dioxide Emission Control on GNP Growth:Interpretation of Proposed Scenarios[R].Paris:IPCC Energy and Industry Subgroup, 1989. [28] 牟宇峰.产业转型背景下就业人口与产业发展关系研究综述[J].人口与经济, 2016(3):103-114. [29] ANG B W.The LMDI approach to decomposition analysis:a practical guide[J].Energ Policy, 2005, 33(7):867-871. [30] 江苏省生态环境厅.江苏省生态环境状况公报(2001-2020年)[R].南京:江苏省生态环境厅, 2023. [31] 苏州市生态环境局.苏州市环境状况公报(2009-2020年)[R].苏州:苏州市生态环境局, 2023. [32] 苏州市统计局.苏州统计年鉴(2002-2021年)[M].北京:中国统计出版社, 2023. [33] CHEN H, YE J, ZHOU Y, et al.Environmental pollution;new findings from Shanghai academy of environmental sciences describe advances in environmental pollution (variations in CH4 and CO2 productions and emissions driven by pollution sources in municipal sewers:an assessment of the role of dissolved organic matter components and microbiota[J].Environmental Pollution, 2020, 263:114-489. [34] 中华人民共和国生态环境部.排放源统计调查产排污核算方法和系数手册[R].北京:中华人民共和国生态环境部, 2021. [35] 周乙新, 李激, 王燕, 等.城镇污水处理厂低浓度进水原因分析及提升措施[J].环境工程, 2021, 39(12):25-30. [36] 王笏勇, 黄荣敏, 骆旭佳, 等.排污管网高水位运行与污水厂进水水质问题研究[C]//中国环境科学学会2021年科学技术年会, 天津, 2021. [37] 戴永康, 罗锋, 温巧贤.东莞市城镇污水处理提质增效潜力分析[J].中国给水排水, 2020, 36(4):1-5. [38] 卢贯能.浅淡城镇污水处理厂进水COD浓度偏低的原因[J].资源节约与环保, 2014(6):144. [39] 林前程.污水处理厂污泥产生、处置、利用状况分析[J].科技创新导报, 2010(7):112-113. [40] 侯爱敏, 饶郁聪.苏州高端服务业提升对策研究[J].苏州科技大学学报(工程技术版), 2022, 35(2):67-74. [41] 苏州市统计局.苏州市第七次全国人口普查公报[R].苏州:苏州市统计局, 2021. [42] 王晓丽.基于"IPAT"等式的城市生活污水驱动因素研究[J].生态经济, 2012(2):146-149. [43] 卢泉, 文虎.我国省域居民消费结构变化对环境污染的影响[J].当代经济, 2010(19):85-87. [44] 蔡博峰, 吕晨, 董金池, 等.重点行业/领域碳达峰路径研究方法[J].环境科学研究, 2022, 35(2):320-328. [45] 刘城宇, 韩峰.生产性服务业集聚有助于降低碳排放吗?[J].南京财经大学学报, 2017(1):91-101. [46] 陈小卉, 钟睿.江苏都市圈治理:由概念到政策[J].人类居住, 2019(2):54-57.
点击查看大图
计量
- 文章访问数: 132
- HTML全文浏览量: 19
- PDF下载量: 9
- 被引次数: 0