DRIVING FACTORS AND DECOUPLING EFFECT ANALYSIS OF TRANSPORTATION CARBON EMISSIONS IN WESTERN CHINA
-
摘要: 西部地区是“丝绸之路经济带”的重要节点,具有显著的交通运输地位和巨大的交通碳减排压力。深入研究西部地区的交通碳排放问题具有重要意义。首先,基于2000—2019年西部地区交通运输行业省级面板数据,使用“自上而下”法核算交通碳排放量,并运用GIS软件对其时空特征进行分析;其次,采用LMDI分解法对交通碳排放影响因素及作用进行探究;最后,构建Tapio脱钩模型,分析西部地区交通碳排放与交通运输行业经济发展的脱钩关系。结果表明:2000—2019年,西部地区交通碳排放总量呈上升趋势,增长了约4.6倍,而上升速度总体有所下降,交通碳排放量最高的省份逐渐向西南地区偏移,四川累计增加交通碳排放量位居西部地区首位,高达2414.85万t CO2。经济规模是促进西部地区交通碳排放增长的主导因素,对交通碳排放的累计贡献率为87.9%,碳排放因子对其贡献最小,累计贡献率仅为4.4%。单耗水平和运输强度对交通碳排放的影响具有异质性,产业结构对交通碳排放整体上起抑制作用。此外西部地区交通运输行业的整体发展方向趋向于低碳化,大多数省市的交通碳排放与交通运输行业经济发展之间经历了从扩张负脱钩到扩张连接,再到弱脱钩的趋势。基于此,建议制定差异化交通碳减排路径方案,重点防范资源型地区的高碳排倾向,加强对西部地区交通运输行业碳排放的定期监测和考评。Abstract: The western region of China is a vital node of the "Silk Road Economic Belt", with significant transportation status and huge pressure on transportation carbon emissions reduction. It is of great significance to deeply study the transportation carbon emission problem in the western region. Firstly, based on the provincial panel data of the transportation industry in the western region from 2000 to 2019, the top-down method was used to calculate transportation carbon emissions, and the spatial and temporal characteristics were described and analyzed by GIS software. Secondly, the LMDI decomposition method was used to explore the influencing factors and effects of transportation carbon emissions. Finally, the Tapio decoupling model was constructed to analyze the decoupling relationship between transportation carbon emissions and the economic development of the transportation industry in the western region. The results showed that:from 2000 to 2019, the total transportation carbon emissions in the western region showed an upward trend, increasing by about 4.6 times, while the overall growth rate decreased. The provinces with the highest transportation carbon emissions were gradually shifting to the southwestern region, and the cumulative increase of transportation carbon emissions in Sichuan ranked first in the western region, reaching 24.1485 million tons of CO2. Economic scale was the leading factor in promoting the growth of transportation carbon emissions in the western region, and the cumulative contribution rate of transportation carbon emissions was 87.9%, while the carbon emission factor contributes the least, with a cumulative contribution rate of only 4.4%. The energy consumption per unit turnover effect and transportation intensity on transportation carbon emissions were heterogeneous, and the industrial structure had an overall inhibitory effect on transportation carbon emissions. In addition, the overall development direction of the transportation industry in the western region tends to be low carbonization, and transportation carbon emissions and economic development of transportation industry in most provinces has experienced a trend from negative decoupling to expansion connection, and then to weak decoupling. Based on this, it was suggested to formulate a differentiated transportation carbon emission reduction path plan scheme, focus on preventing high carbon emission tendencies in resource-based areas, and strengthen regular monitoring and evaluation of carbon emissions in the transportation industry in the western region.
-
[1] 王靖添, 马晓明.中国交通运输碳排放影响因素研究:基于双层次计量模型分析[J].北京大学学报(自然科学版), 2021, 57(6):1133-1142. [2] 李晓易, 吴睿.交通运输温室气体核算边界和测算方法研究[J].气候变化研究进展, 2023, 19(1):84-90. [3] 诸立超, 刘昭然, 汪瑞琪, 等.中国货运结构优化的碳减排效应测度[J].交通运输系统工程与信息, 2022, 22(6):309-315. [4] TIAN Y H, ZHU Q H, LAI K H, et al.Analysis of greenhouse gas emissions of freight transport sector in China[J].Journal of Transport Geography, 2014, 40:43-52. [5] 李利军, 姚国君.京津冀公铁货运碳排放测算研究[J].铁道运输与经济, 2021, 43(11):126-132. [6] 田佩宁, 毛保华, 童瑞咏, 等.我国交通运输行业及不同运输方式的碳排放水平和强度分析[J].气候变化研究进展, 2023, 19(3):347-356. [7] ANG B W, LIU F L.A new energy decomposition method:perfect in decomposition and consistent in aggregation[J].Energy, 2001, 26(6):537-548. [8] 喻洁, 达亚彬, 欧阳斌.基于LMDI分解方法的中国交通运输行业碳排放变化分析[J].中国公路学报, 2015, 28(10):112-119. [9] 宋德勇, 宋沁颖, 张麒.中国交通碳排放驱动因素分析:基于脱钩理论与GFI分解法[J].科技管理研究, 2022, 42(11):216-228. [10] 王世进, 蒯乐伊.中国交通运输业碳排放驱动因素与达峰路径[J].资源科学, 2022, 44(12):2415-2427. [11] 胡怀敏, 左薇, 徐士元.长江经济带交通能源碳排放脱钩效应及驱动因素研究[J].长江流域资源与环境, 2022, 31(4):862-877. [12] TAPIO P.Towards a theory of decoupling:degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001[J].Transport Policy, 2005, 12(2):137-151. [13] 滕王滕菲, 冯套柱, 郭道燕.西北地区碳排放的驱动因素与脱钩效应研究[J].北京师范大学学报(自然科学版), 2023, 59(2):260-268. [14] 宋晓聪, 沈鹏, 谢明辉, 等.我国工业CO2排放与经济发展脱钩关系解析[J].生态经济, 2023, 39(5):28-33. [15] 卢升荣, 蒋惠园, 刘瑶.交通运输业CO2排放区域差异及影响因素[J].交通运输系统工程与信息, 2017, 17(1):32-39. [16] SHAN Y, GUAN D, ZHENG H, et al.China CO2 emission accounts 1997-2015[J].Scientific data, 2018, 5(1):1-14. [17] 李乔楚, 陈军华, 何京.基于清单算法的碳排放特征与空间分异分析:以四川省为例[J].环境污染与防治, 2021, 43(12):1513-1519, 1525. [18] WEI Q, ZHAO S, XIAO W.A quantitative analysis of carbon emissions reduction ability of transportation structure optimization in China[J].Journal of Transportation Systems Engineering & Information Technology, 2013, 13(3):10-17. [19] 杨绍华, 张宇泉, 耿涌.基于LMDI的长江经济带交通碳排放变化分析[J].中国环境科学, 2022, 42(10):4817-4826. [20] 袁长伟, 乔丹, 杨颖芳, 等.中国省域交通碳排放强度空间分异与聚类分析[J].环境工程, 2018, 36(7):185-190. [21] 袁长伟, 张倩, 芮晓丽, 等.中国交通运输碳排放时空演变及差异分析[J].环境科学学报, 2016, 36(12):4555-4562. -

计量
- 文章访问数: 117
- HTML全文浏览量: 7
- PDF下载量: 4
- 被引次数: 0