RESEARCH PROGRESS OF URBAN CARBON FLUX MONITORING
-
摘要: 城市是全球温室气体排放的主要来源。由于城市生态系统的复杂性和人类活动的不确定性,不同城市之间的碳循环特征存在较大差异。目前城市碳通量监测方法主要包括“自下而上”和“自上而下”两种方式,然而对于其分析框架和监测方法的综述却鲜有报道。文章系统评述了城市碳循环影响因子以及碳通量观测和模拟方法,介绍了国内外典型城市碳监测网络,并指出了未来研究方向,包括发展高分辨的全球碳同化理论与技术,验证和推广不同城市下垫面的碳源/汇分布特征,溯源解析城市区域人为碳排放和自然碳源汇规律,开展城市复杂地表与大气之间的CO2交换机制及城市碳通量环境响应机理研究等。研究结果将增强对全球碳循环的认识,为我国实施“双碳”战略、应对气候谈判与碳盘点、服务碳中和评估提供科学支持。Abstract: Cities are the main source of global greenhouse gas emissions. Due to the complexity of urban ecosystems and the uncertainty of human activities, there are significant differences in carbon cycling characteristics among different cities. Currently, carbon flux monitoring methods mainly include "bottom-up" and "top-down" approaches. However, there are few reports on the review of their analytical framework and monitoring methods. This paper provides a systematic review of urban carbon cycle influencing factors, carbon flux observation, and simulation methods, and introduces typical urban carbon monitoring networks both domestically and internationally. It also points out future research directions, including developing high-resolution global carbon assimilation theories and technologies, verifying and promoting the distribution characteristics of carbon sources/sinks in different urban land surfaces, tracing the anthropogenic carbon emissions and ecosystem carbon source/sink patterns in urban regions, and carrying out research on the exchange mechanisms between complex urban land surfaces and the atmosphere, as well as the environmental response mechanisms of urban carbon flux. This study will increase our understanding of the global carbon cycle and provide scientific support for China to implement the dual-carbon strategy, address climate negotiations and carbon inventory, and evaluate carbon neutrality.
-
Key words:
- urban ecosystem /
- carbon cycle /
- flux observation /
- data assimilation
-
[1] MARCOTULLIO P J, SARZYNSKI A, ALBRECHT J, et al. The geography of global urban greenhouse gas emissions:an exploratory analysis[J]. Climatic Change, 2013, 121(4):621-634. [2] IPCC. Climate change 2022:mitigation of climate change[M/OL]. 2022[2022-10-31]. https://www.ipcc.ch/report/sixth-assessment-report working-group-3/. [3] VELASCO E, ROTH M. Cities as net sources of CO2:review of atmospheric CO2 exchange in urban environments measured by eddy covariance technique[J]. Geography Compass, 2010, 4(9):1238-1259. [4] SONG J Y, WANG Z H, WANG C H. Biospheric and anthropogenic contributors to atmospheric CO2 variability in a residential neighborhood of Phoenix, Arizona[J]. Journal of Geophysical Research Atmospheres, 2017, 122(6):3317-3329. [5] CHEN G W, LAM C K C, WANG K, et al. Effects of urban geometry on thermal environment in 2D street canyons:a scaled experimental study[J]. Building and Environment, 2021, 198(7):107916. [6] 何文, 刘辉志, 冯健武. 城市近地层湍流通量及CO2通量变化特征[J]. 气候与环境研究, 2010, 15(1):21-33. [7] MORIWAKI R, KANDA M. Local and global similarity in turbulent transfer of heat, water vapour, and CO2 in the dynamic convective sublayer over a suburban area[J]. Boundary-Layer Meteorology, 2006, 120(1):163-179. [8] SCHMUTZ M, VOGT R. Flux similarity and turbulent transport of momentum, heat and carbon dioxide in the urban boundary layer[J]. Boundary-Layer Meteorology, 2019, 172(1):45-65. [9] WANG L, LI D, GAO Z, et al. Turbulent transport of momentum and scalars above an urban canopy[J]. Boundary-Layer Meteorology, 2014, 150(3):485-511. [10] BRIBER B M, HUTYRA L R, DUNN A L, et al. Variations in atmospheric CO2 mixing ratios across a Boston, MA urban to rural gradient[J]. Land, 2013, 2(3):304-327. [11] GATELY C K, HUTYRA L R, WING I S, et al. A bottom up approach to on-road CO2 emissions estimates:improved spatial accuracy and applications for regional planning[J]. Environmental Science and Technology, 2013, 47(5):2423-2430. [12] 刘毅, 王婧, 车轲, 等. 温室气体的卫星遥感:进展与趋势[J]. 遥感学报, 2021, 25(1):53-64. [13] LIETZKE B, VOGT R. Variability of CO2 concentrations and fluxes in and above an urban street canyon[J]. Atmospheric Environmentatmos, 2013, 74(8):60-72. [14] 赵荣钦, 黄贤金. 城市系统碳循环:特征、机理与理论框架[J]. 生态学报, 2013, 33(2):358-366. [15] MUÑIZ I, GARCIA-LÓPEZ M A. Urban form and spatial structure as determinants of the ecological footprint of commuting[J]. Transportation research, Part D. Transport and Environment, 2019, 67(2):334-350. [16] HONG S F, HUI E C M, LIN Y Y. Relationship between urban spatial structure and carbon emissions:a literature review[J]. Ecological Indicators, 2022, 144(12):109456. [17] LI C, ZHANG L, GU Q Y, et al. Spatio-temporal differentiation characteristics and urbanization factors of urban household carbon emissions in China[J]. International Journal of Environmental Research and Public Health, 2022, 19(8):4451. [18] YU X, WU Z, ZHENG H, et al. How urban agglomeration improve the emission efficiency? A spatial econometric analysis of the Yangtze River Delta urban agglomeration in China[J]. Journal of Environmental Management, 2020, 260(4):110061. [19] OU J P, LIU X P, LI X, et al. Quantifying the relationship between urban forms and carbon emissions using panel data analysis[J]. Landscape Ecology, 2013, 28(10):1889-1907. [20] CREUTZIG F, BAIOCCHI G, BIERKANDT R, et al. Global typology of urban energy use and potentials for an urbanization mitigation wedge[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(20):6283-6288. [21] UNDERWOOD A, FREMSTAD A. Does sharing backfire? A decomposition of household and urban economies in CO2 emissions[J]. Energy Policy, 2018, 123(12):404-413. [22] WAYGOOD E O D, SUN Y L, SUSILO Y O. Transportation carbon dioxide emissions by built environment and family lifecycle:case study of the Osaka metropolitan area[J]. Transportation Research, Part D. Transport and Environment, 2014, 31(8):176-188. [23] ANTEQUERA P D, PACHECO J D, DÍEZ A L, et al. Tourism, transport and climate change:the carbon footprint of international air traffic on islands[J]. Sustainability, 2021, 13(4):1795. [24] DUFFY A. Land use planning in Ireland:A life cycle energy analysis of recent residential development in the Greater Dublin Area[J]. The International Journal of Life Cycle Assessment, 2009, 14(3):268-277. [25] HUSSAIN Z, KHAN M K, XIA Z Q. Investigating the role of green transport, environmental taxes and expenditures in mitigating the transport CO2 emissions[J]. Transportation Letters, 2023, 15(5):439-449. [26] RAMASWAMI A, HILLMAN T, JANSON B, et al. A demand-centered, hybrid life-cycle methodology for city-scale greenhouse gas inventories[J]. Environmental Science and Technology, 2008, 42(17):6455-6461. [27] VELASCO E, PERRUSQUIA R, JIMÉNEZ E, et al. Sources and sinks of carbon dioxide in a neighborhood of Mexico City[J]. Atmospheric Environment, 2014, 97(11):226-238. [28] LIETZKE B, VOGT R, FEIGENWINTER C, et al. On the controlling factors for the variability of carbon dioxide flux in a heterogeneous urban environment[J]. International of Journal Climatology, 2015, 35(13):3921-3941. [29] WARD H C, KOTTHAUS S, GRIMMOND C S B, et al. Effects of urban density on carbon dioxide exchanges:observations of dense urban, suburban and wood-land areas of Southern England[J]. Environmental Pollution, 2015, 198(3):186-200. [30] HARDIMAN B S, WANG J A, HUTYRA L R, et al. Accounting for urban biogenic fluxes in regional carbon budgets[J]. Science of the Total Environment, 2017, 592(8):366-372. [31] STAGAKIS S, CHRYSOULAKIS N, SPYRIDAKIS N, et al. Eddy Covariance measurements and source partitioning of CO2 emissions in an urban environment:application for Heraklion, Greece[J]. Atmospheric Environment, 2019, 201(3):278-292. [32] WIDORY D, JAVOY M. The carbon isotope composition of atmospheric CO2 in Paris[J]. Earth and Planetary Science Letters, 2003, 215(1/2):289-298. [33] 龙惟定, 梁浩. 我国城市建筑碳达峰与碳中和路径探讨[J]. 暖通空调, 2021, 51(4):1-17. [34] SHARIFI A. Co-benefits and synergies between urban climate change mitigation and adaptation measures:a literature review[J]. Science of the Total Environment, 2021, 750(1):141642. [35] SUN C L, ZHANG Y L, MA W W, et al. The impacts of urban form on carbon emissions:a comprehensive review[J]. Land, 2022, 11(9):1430. [36] BJÖRKEGREN A, GRIMMOND C S B. Net carbon dioxide emissions from central London[J]. Urban Climate, 2018, 23(3):131-158. [37] LIN D T, ZHANG L Y, CHEN C, et al. Understanding driving patterns of carbon emissions from the transport sector in China:evidence from an analysis of panel models[J]. Clean Technologies and Environmental Policy, 2019, 21(6):1307-1322. [38] 沈岩, 武彤冉, 闫静, 等. 基于COPERT模型北京市机动车大气污染物和二氧化碳排放研究[J]. 环境工程技术学报, 2021, 11(6):1075-1082. [39] 田佩宁, 毛保华, 童瑞咏, 等. 我国交通运输行业及不同运输方式的碳排放水平和强度分析[J]. 气候变化研究进展, 2023, 19(3):347-356. [40] 胡荣, 王德芸, 冯慧琳, 等. 碳达峰视角下的机场航空器碳排放预测[J]. 交通运输系统工程与信息, 2021, 21(6):257-263. [41] RACITI S, HUTYRA L, RAO P, et al. Inconsistent definitions of "urban" result in different conclusions about the size of urban carbon and nitrogen stocks[J]. Ecological Applications, 2012, 22(3):1015-1033. [42] HUTYRA L R, YOON B, HEPINSTALL-CYMERMAN J, et al. Carbon consequences of land cover change and expansion of urban lands:a case study in the Seattle metropolitan region[J]. Landscape and Urban Planning, 2011, 103(1):83-93. [43] HUTYRA L R, YOON B, ALBERTI M. Terrestrial carbon stocks across a gradient of urbanization:a study of the Seattle, WA region[J]. Global Change Biology, 2011, 17(2):783-797. [44] COUTTS A M, BERINGER J, TAPPER N J. Characteristics influencing the variability of urban CO2 fluxes in Melbourne, Australia[J]. Atmospheric Environment, 2007, 41(1):51-62. [45] RICHARDSON I, THOMSON M, INFIELD D, et al. Domestic electricity use:a high-resolution energy demand model[J]. Energy and Buildings, 2010, 42(10):1878-1887. [46] IMHOFF M A, BOUNOUA L, DEFRIES R, et al. The consequences of urban land transformation on net primary productivity in the United States[J]. Remote Sensing of Environment, 2004, 89(4):434-443. [47] ZHANG X Y, FRIEDL M A, SCHAAF C B, et al. Climate controls on vegetation phenological patterns in northern mid and high latitudes inferred from MODIS data[J]. Global Change Biology, 2004, 10(7):1133-1145. [48] LUO Z K, SUN O J, GE Q S, et al. Phenological responses of plants to climate change in an urban environment[J]. Ecological Research, 2007, 22(3):507-514. [49] BELLUCCO V, MARRAS S, GRIMMOND C S B, et al. Modelling the biogenic CO2 exchange in urban and non-urban ecosystems through the assessment of light-response curve parameters[J]. Agricultural and Forest Meteorology, 2017, 236(4):113-122. [50] 王介民, 王维真, 奥银焕. 复杂条件下湍流通量的观测与分析[J]. 地球科学进展, 2007, 22(8):791-797. [51] GATELY C K, HUTYRA L R, PETERSON S, et al. Urban emissions hotspots:quantifying vehicle congestion and air pollution using mobile phone GPS data[J]. Environmental Pollution, 2017, 229(10):496-504. [52] JÄRVI L, HAVU M, WARD H C, et al. Spatial modeling of local-scale biogenic and anthropogenic carbon dioxide emissions in Helsinki[J]. Journal of Geophysical Research Atmospheres. 2019, 124(15):8363-8384. [53] CRAWFORD B, CHRISTEN A. Spatial source attribution of measured urban eddy covariance CO2 fluxes[J]. Theoretical and Applied Climatology, 2015, 119(4):733-755. [54] MORIWAKI R, KANDA M. Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area[J]. Journal of Applied Meteorology and Climatology, 2004, 43(11):1700-1710. [55] LIU R, ZHAI X B, CHUA V. Carbon emission calculation of thermal power plant:an overview[J]. Advanced Materials Research, 2014, 962-965(6):1368-1372. [56] GRIMMOND C S B. Progress in measuring and observing the urban atmosphere[J]. Theoretical and Applied Climatology, 2006, 84(6):3-22. [57] BALDOCCHI D D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems:past, present and future[J]. Global Change Biology, 2003, 9(4):479-492. [58] 刘阳. 北京城市下垫面湍流输送及水汽、CO2通量交换特征的研究[D]. 北京:中国科学院大学, 2018. [59] GRIMMOND C S B, KING T S, CROPLEY F D, et al. Local-scale fluxes of carbon dioxide in urban environments:methodological challenges and results from Chicago[J]. Environmental Pollution, 2002, 116(Suppl.1):S243-S254. [60] GRIMMOND C S B, SALMOND J A, OKE T R, et al. Flux and turbulence measurements at a densely built-up site in Marseille:heat, mass (water and carbon dioxide), and momentum[J]. Journal of Geophysical Research, 2004, 109(D24):24101-24120. [61] PAWLAK W, FORTUNIAK K, SIEDLECKI M. Carbon dioxide flux in the centre of [XC0.TIF;%55%55, JZ], Poland:analysis of a 2-year eddy covariance measurement data set[J]. International Journal of Climatology, 2011, 31(2):232-243. [62] JÄRVI L, NORDBO A, JUNNINEN H, et al. Seasonal and annual variation of carbon dioxide surface fluxes in Helsinki, Finland, in 2006-2010[J]. Atmospheric Chemistry and Physics, 2012, 12(18):8475-8489. [63] GIOLI B, TOSCANO P, LUGATO E, et al. Methane and carbon dioxide fluxes and source partitioning in urban areas:the case study of Florence, Italy[J]. Environmental Pollution, 2012, 164(5):125-131. [64] HELFTER C, TREMPER A H, HALIOS C H, et al. Spatial and temporal variability of urban fluxes of methane, carbon monoxide and carbon dioxide above London, UK[J]. Atmospheric Chemistry and Physics, 2016, 16(16):10543-10557. [65] 支星, 敖翔宇. 上海中心城区二氧化碳通量特征分析[J]. 气象与环境学报, 2020, 36(3):72-79. [66] VELASCO E, PRESSLEY S, ALLWINE E, et al. Measurements of CO2 fluxes from the Mexico City urban landscape[J]. Atmospheric Environment, 2005, 39(38):7433-7446. [67] AO X Y, GRIMMOND C S B, CHANG Y Y, et al. Heat, water and carbon exchanges in the tall megacity of Shanghai:challenges and results[J]. International Journal of Climatology:A Journal of the Royal Meteorological Society, 2016, 36(14):4608-4624. [68] LIU H Z, FENG J W, JÄRVI L, et al. Four-year (2006-2009) eddy covariance measurements of CO2 flux over an urban area in Beijing[J]. Atmospheric Chemistry and Physics, 2012, 12(17):7881-7892. [69] HELFTER C, FAMULARI D, PHILLIPS G J, et al. Controls of carbon dioxide concentrations and fluxes above central London[J]. Atmospheric Chemistry and Physics, 2011, 11(5):1913-1928. [70] SOEGAARD H, MØLLER-JENSEN L. Towards a spatial CO2 budget of a metropolitan region based on textural image classification and flux measurements[J]. Remote Sensing of Environment, 2003, 87(2/3):283-294. [71] BERGERON O, STRACHAN I. CO2 sources and sinks in urban and suburban areas of a northern mid-latitude city[J]. Atmospheric Environment, 2011, 45(8):1564-1573. [72] HIRANO T, SUGAWARA H, MURAYAMA S, et al. Diurnal variation of CO2 flux in an urban area of Tokyo[J]. Scientific Online Letters on the Atmosphere, 2015, 11(7):100-103. [73] PARK M S, JOO S J, PARK S U. Carbon dioxide concentration and flux in an urban residential area in Seoul, Korea[J]. Advances in Atmospheric Sciences, 2014, 31(7):1101-1112. [74] BURRI S, FREY C, PARLOW E, et al. CO2 fuxes and concentrations over an urban surface in Cairo, Egypt[C]//7th International Conference on Urban Climate, Yokohama, 2009. [75] SONG T, WANG Y S. Carbon dioxide fluxes from an urban area in Beijing[J]. Atmospheric Research, 2012, 106(3):139-149. [76] CRAWFORD B, GRIMMOND C S B, CHRISTEN A. Five years of carbon dioxide fluxes measurements in a highly vegetated suburban area[J]. Atmospheric Environment, 2011, 45(4):896-905. [77] LIU Y, LIU H Z, DU Q, et al. Multi-level CO2 fluxes over Beijing megacity with the eddy covariance method[J]. Atmospheric and Oceanic Science Letters, 2021, 14(6):100079. [78] 刘郁珏. 北京325米气象塔上CO2梯度观测资料的分析研究[D]. 北京:中国科学院大学, 2015. [79] LIU Z, LIU Z R, SONG T, et al. Long-term variation in CO2 emissions with implications for the interannual trend in PM2.5 over the last decade in Beijing, China[J]. Environmental Pollution, 2020, 266(3):115014. [80] 窦军霞, 刘伟东, 苗世光, 等. 北京城郊地区二氧化碳通量特征[J]. 生态学报, 2015, 35(15):5228-5238. [81] STAGAKIS S, FEIGENWINTER C, VOGT R, et al. A high-resolution monitoring approach of urban CO2 fluxes. Part 2-surface flux optimisation using eddy covariance observations[J]. Science of The Total Environment, 2023, 903(8):166035. [82] KORDOWSKI K, KUTTLER W. Carbon dioxide fluxes over an urban park area[J]. Atmospheric Environment, 2010, 44(23):2722-2730. [83] SCHMIDT A, WRZESINSKY T, KLEMM O. Gap filling and quality assessment of CO2 and water vapour fluxes above an urban area with radial basis function neural networks[J]. Boundary-Layer Meteorology. 2008, 126(3):389-413. [84] NEMITZ E, HARGREAVES K J, MCDONALD A G, et al. Micrometeorological measurements of the urban heat budget and CO2 emissions on a city scale[J]. Environmental Science and Technology, 2002, 36(14):3139-3146. [85] CHRISTEN A, COOPS N C, CRAWFORD B R, et al. Validation of modeled carbon-dioxide emissions from an urban neighborhood with direct eddy-covariance measurements[J]. Atmospheric Environmentatmos, 2011, 45(33):6057-6069. [86] PÉREZ-RUIZ E R, VIVONI E R, TEMPLETON N P. Urban land cover type determines the sensitivity of carbon dioxide fluxes to precipitation in Phoenix, Arizona[J]. PloS One, 2020, 15(2):e0228537. [87] JASEK-KAMIŃSKA A, ZIMNOCH M, WACHNIEW P, et al. Urban CO2 budget:spatial and seasonal variability of CO2 emissions in Krakow, Poland[J]. Atmosphere, 2020, 11(6):629. [88] VELASCO E, PRESSLEY S, GRIVICKE R, et al. Eddy covariance flux measurements of pollutant gases in urban Mexico City[J]. Atmospheric Chemistry and Physics, 2009, 9(19):7325-7342. [89] UEYAMA M, TAKANO T. A decade of CO2 flux measured by the eddy covariance method including the COVID-19 pandemic period in an urban center in Sakai, Japan[J]. Environmental Pollution, 2022, 304(7):119210. [90] VELASCO E, ROTH M, TAN S H, et al. The role of vegetation in the CO2 flux from a tropical urban neighbourhood[J]. Atmospheric Chemistry and Physics, 2013, 13(20):10185-10202. [91] PARK C, JEONG S, PARK M S, et al. Spatiotemporal variations in urban CO2 flux with landuse types in Seoul[J]. Carbon Balance and Management, 2022, 17(1):1-14. [92] RANA G, MARTINELLI N, FAMULARI D, et al. Representativeness of carbon dioxide fluxes measured by eddy covariance over a Mediterranean urban district with equipment setup restrictions[J]. Atmosphere, 2021, 12(2):197. [93] GIOLI B, MIGLIETTA F, MARTINO B D, et al. Comparison between tower and aircraft-based eddy covariance fluxes in five European regions[J]. Agricultural and Forest Meteorology, 2004, 127(1/2):1-16. [94] DESJARDINS R L, WORTH D E, MACPHERSON J I, et al. Flux measurements by the NRC Twin Otter atmospheric research aircraft:1987-2011[J]. Advances in Science and Research, 2016, 13(3):43-49. [95] VELLINGA O S, GIOLI B, ELBERS J A, et al. Regional carbon dioxide and energy fluxes from airborne observations using flightpath segmentation based on landscape characteristics[J]. Biogeosciences, 2010, 7(4):1307-1321. [96] WOLFE G M, KAWA S R, HANISCO T F, et al. The NASA carbon airborne flux experiment (CARAFE):instrumentation and methodology[J]. Atmospheric Measurement Techniques, 2018, 11(3):1757-1776. [97] FONT A, MORGUI J A, GRIMMOND S, et al. Aircraft observations of the urban CO2 dome in London and calculated daytime CO2 fluxes at the urban-regional scale[J]. Geophysical Research Abstracts, 2013, 15(4):11498. [98] ELSTON J, ARGROW B, STACHURA M, et al. Overview of small fixed-wing unmanned aircraft for meteorological sampling[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32(1):97-115. [99] ANDERSON K, GASTON K J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology[J]. Frontiers in Ecology and the Environment, 2013, 11(3):138-146. [100] REINEMAN B D, LENAIN L, STATOM N M, et al. Development and testing of instrumentation for UAV-Based flux measurements within terrestrial and marine atmospheric boundary layers[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(7):1295-1319. [101] REUDER J, BÅSERUD L, JONASSEN M O, et al. Exploring the potential of the RPA system SUMO for multipurpose boundary-layer missions during the BLLAST campaign[J]. Atmospheric Measurement Techniques, 2016, 9(6):2675-2688. [102] MAHRT L. Flux sampling errors for aircraft and towers[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15(2):416-429. [103] WOLFF S, EHRET G, KIEMLE C, et al. Determination of the emission rates of CO2 point sources with airborne lidar[J]. Atmospheric Measurement Techniques, 2021, 14(4):2717-2736. [104] CREVOISIER C, CHÉDIN A, MATSUEDA H, et al. First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations[J]. Atmospheric Chemistry and Physics, 2009, 9(14):4797-4810. [105] BURROWS J P, HÖLZLE E, GOEDE A P, et al. Scanning imaging absorption spectrometer for atmospheric chartography[J]. Acta Astronautica, 1995, 35(7):445-451. [106] BOVENSMANN H, BURROWS J P, Buchwitz M, et al. SCIAMACHY:mission objectives and measurement modes[J]. Journal of the Atmospheric Sciences, 1999, 56(2):127-150. [107] RUSLI S P, HASEKAMP O, BRUGH J A D, et al. Anthropogenic CO2 monitoring satellite mission:the need for multi-angle polarimetric observations[J]. Atmospheric Measurement Techniques, 2021, 14(2):1167-1190. [108] KUZE A, SUTO H, NAKAJIMA M, et al. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the greenhouse gases observing satellite for greenhouse gases monitoring[J]. Applied Optics, 2009, 48(35):6716-6733. [109] BOESCH H, BAKER D, CONNOR B, et al. Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the orbiting carbon observatory-2 mission[J]. Remote Sensing, 2011, 3(2):270-304. [110] TAYLOR T E, ELDERING A, MERRELLI A, et al. OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals[J]. Remote Sensing of Environment, 2020, 251(12):112032. [111] YANG D X, LIU Y, CAI Z N, et al. First global carbon dioxide maps produced from Tansat measurements[J]. Advances in Atmospheric Sciences, 2018, 35(6):621-623. [112] YANG D, BOESCH H, LIU Y, et al. Toward high precision XCO2 retrievals from TanSat observations:retrieval improvement and validation against TCCON measurements[J]. Journal of Geophysical Research, 2020, 125(22):e2020JD032794. [113] YANG D X, LIU Y, BOESCH H, et al. A new TanSat XCO2 global product towards climate studies[J]. Advances in Atmospheric Sciences, 2021, 38(1):8-11. [114] SHI H L, LI Z W, YE H H, et al. First level 1 product results of the greenhouse gas monitoring instrument on the GaoFen-5 satellite[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(2):899-914. [115] 叶函函, 王先华, 吴时超, 等. 高分五号卫星GMI大气CO2反演方法[J]. 大气与环境光学学报, 2021, 16(3):231-238. [116] 蔡博峰, 朱松丽, 于胜民, 等.《IPCC2006年国家温室气体清单指南2019修订版》解读[J]. 环境工程, 2019, 37(8):1-11. [117] GURNEY K R, LAW R M, DENNING A S, et al. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models[J]. Nature, 2002, 415(6872):626-630. [118] JIANG F, WANG H M, CHEN J M, et al. Nested atmospheric inversion for the terrestrial carbon sources and sinks in China[J]. Biogeosciences, 2013, 10(8):5311-5324. [119] PETERS W, JACOBSON A R, SWEENEY C, et al. An atmospheric perspective on North American carbon dioxide exchange:carbontracker[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(48):18925-18930. [120] PETERS W, KROL M C, WERF G R V D, et al. Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations[J]. Global Biogeochemical Cycles, 2010, 16(4):1317-1337. [121] KENEA S T, OH Y S, RHEE J S, et al. Evaluation of simulated CO2 concentrations from the carbontracker-asia model using in-situ observations over East Asia for 2009-2013[J]. Advances in Atmospheric Sciences, 2019, 36(6):603-613. [122] ZHANG H F, CHEN B Z, LAAN-LUIJK I T V D, et al. Estimating Asian terrestrial carbon fluxes from CONTRAIL aircraft and surface CO2 observations for the period 2006-2010[J]. Atmospheric Chemistry and Physics, 2014, 14(11):5807-5824. [123] 陈镜明, 居为民, 刘荣高, 等. 全球陆地碳汇的遥感和优化计算方法[M]. 北京:科学出版社, 2015. [124] ZHANG S, ZHENG X, CHEN J M, et al. A global carbon assimilation system using a modified ensemble Kalman filter[J]. Geoscientific Model Development, 2015, 8(3):805-816. [125] TIAN X, XIE Z, LIU Y, et al. A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO2 fluxes and 3-D atmospheric CO2 concentrations from observations[J]. Atmospheric Chemistry and Physics, 2014, 14(23):13281-13293. [126] WANG J, JIANG F, WANG H M, et al. Constraining global terrestrial gross primary productivity in a global carbon assimilation system with OCO-2 chlorophyll fluorescence data[J]. Agricultural and Forest Meteorology, 2021, 304-305(7):108424. [127] JIANG F, WANG H M, CHEN J M, et al. Regional CO2 fluxes from 2010 to 2015 inferred from GOSAT XCO2 retrievals using a new version of the Global Carbon Assimilation System[J]. Atmospheric Chemistry and Physics, 2015, 21(3):1963-1985. [128] JIANG F, JU W M, HE W, et al. A 10-year global monthly averaged terrestrial net ecosystem exchange dataset inferred from the ACOS GOSAT v9 XCO2 retrievals (GCAS2021)[J]. Earth System Science Data, 2022, 14(7):3013-3037. [129] CIAIS P, CRISP D, GON H D V D, et al. Towards a European operational observing system to monitor fossil:CO2 emissions:final report from the expert group[C]//European Commission, Brussels, 2015. [130] DUREN R M, MILLER C E. Measuring the carbon emissions of megacities[J]. Nature Climate Change, 2012, 2(8):560-562. [131] BASU S, LEHMAN S J, MILLER J B, et al. Estimating US fossil fuel CO2 emissions from measurements of 14C in atmospheric CO2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(24):13300-13307. [132] GRAVEN H, FISCHER M L, LUEKER T, et al. Assessing fossil fuel CO2 emissions in California using atmospheric observations and models[J]. Environmental Research Letters, 2018, 13(6):065007. [133] LIU J J, BOWMAN K. A method for independent validation of surface fluxes from atmospheric inversion:application to CO2[J]. Geophysical Research Letters, 2016, 43(7):3502-3508. [134] ZHENG B, GENG G N, CIAIS P, et al. Satellite-based estimates of decline and rebound in China's CO2 emissions during COVID19 pandemic[J]. Science Advances, 2020, 6(49):2375-2548. [135] VERHULST K R, KARION A, KIM J, et al. Carbon dioxide and methane measurements from the Los Angeles Megacity Carbon Project-Part 1:calibration, urban enhancements, and uncertainty estimates[J]. Atmospheric Chemistry and Physics, 2017, 17(7):8313-8341. [136] XIONG T L, LIU Y W, YANG C, et al. Research overview of urban carbon emission measurement and future prospect for GHG monitoring network[C]//2023 the 7th International Conference on Energy and Environmental Science (ICEES 2023), Changsha, 2023. [137] BRÉON F M, BROQUET G, PUYGRENIER V, et al. An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements[J]. Atmospheric Chemistry and Physics, 2015, 15(4):1707-1724. [138] YANG Y, ZHOU M, WANG T, et al. Spatial and temporal variations of CO2 mole fractions observed at Beijing, Xianghe and Xinglong in North China[J]. Atmospheric Chemistry and Physics, 2021(15):11741. [139] HAN P F, ZENG N, WANG Y N, et al. Regional carbon monitoring for the Beijing-Tianjin-Hebei (JJJ) City Cluster[C]//European Geosciences Union (EGU), Vienna, 2018.
点击查看大图
计量
- 文章访问数: 247
- HTML全文浏览量: 18
- PDF下载量: 13
- 被引次数: 0