PROFILING ON POLLUTION OF URBAN DRAINAGE PUMPING OUTFLOW DURING WET WEATHER
-
摘要: 为从数据视角识别中心城区排水泵站雨天出流污染的分类特征,采用基于无监督机器学习的K-means聚类算法对上海市中心城200余座泵站的设施数据和行为数据进行指标提取和画像分析。结果表明:中心城泵站分为低频高质型泵站、高频低质型泵站、高频高污型泵站和中频中污型泵站4类画像,建议优先加强第3类高频高污型泵站和第4类中频中污型泵站的出流污染管控,并根据分群特点提出了各类画像对应的管控对策。该研究结果具有较好的解释性和应用价值,可为基于数据分析的分类管控、管网提质增效实施优先级策略制定提供参考。Abstract: Unsupervised learning with K-means clustering is used to identify pollution characteristics of urban drainage pumping outflow during wet weather. Indicators including pumping station asset property and behavior data are chosen and then profiled for over 200 pumping stations of Shanghai downtown area. It shows that these pumping stations are classified into 4 clusters including low-frequency high-concentration, high-frequency low-concentration, high-frequency high-pollution, and medium-frequency medium-pollution, and the last 2 clusters are of higher priority for pollution control measures. The method used to profile pumping stations shows reasonable results and is of great value for policymakers to deploy drainage quality improving and efficiency enhancing measures.
-
[1] 谭琼, 李田, 高秋霞.上海市排水系统雨天出流的初期效应分析[J].中国给水排水, 2005(11):26-30. [2] 李田, 戴梅红, 张伟, 等.水泵强制排水系统合流制溢流的污染源解析[J].同济大学学报(自然科学版), 2013, 41(10):1513-1518, 1525. [3] 张梦, 李田.上海市排水系统雨天出流及地表径流沉降特性初探[J].环境污染与防治, 2007(9):668-670. [4] 丁敏.上海市政排水泵站功能延伸的探索与实践[J].净水技术, 2020, 39(增刊1):231-234. [5] 顾一鸣, 马艳.防汛泵站出流污染削减对策探索[J].净水技术, 2021, 40(10):138-143. [6] 程琦, 杨杰, 罗名海, 等.武汉市旧城核心区多要素画像与评价研究[J].地理空间信息, 2020, 18(12):14-18, 6. [7] 陆晓, 徐春雷, 冷钊莹, 等.基于数据驱动方法的疫情阶段电力用户负荷特性画像模型[J].电力建设, 2021, 42(2):93-106. [8] 张艳丰, 邹凯, 彭丽徽, 等.数字空间视角下智慧城市全景数据画像实证研究[J].情报学报, 2020, 39(12):1330-1339. [9] 王爱杰, 许冬件, 钱志敏, 等.我国智慧水务发展现状及趋势[J].环境工程, 2023, 41(9):46-53. [10] TAN P N, STEINBACH M, KUMAR V.数据挖掘导论[M].范明等, 译.北京:人民邮电出版社, 2018:310-319.
点击查看大图
计量
- 文章访问数: 79
- HTML全文浏览量: 7
- PDF下载量: 6
- 被引次数: 0