RESEARCH PROGRESS ON INFLUENCING FACTORS AND THEIR PREDICTION MODELS OF HYDROGEN SULFIDE GENERATION IN MUNICIPAL SEWAGE PIPELINES
-
摘要: 污水在市政污水管道的运输过程中,会释放大量的硫化氢(H2S),易引发恶臭、中毒和管道腐蚀等问题。采用合理的预测模型对管道中H2S的产生进行预测,可为后续采取相关的H2S控制措施提供依据,对于污水管网的规划也具有重要意义。因此,首先分析了影响污水管道中H2S生成的主要因素;其次将H2S生成预测模型按照传统统计学和机器学习2类进行归类,并总结其研究进展;最后,探索了H2S生成预测模型的潜在研究热点和难点,以期为市政污水管道H2S预测模型的建立提供参考。Abstract: When sewage is transported in municipal sewer pipes, a large amount of hydrogen sulfide (H2S) will be released. This toxic and harmful gas is easy to cause odor, poisoning, and pipeline corrosion. Using a reasonable prediction model to predict the generation of H2S in the pipeline can provide a basis for the subsequent adoption of relevant H2S control measures, and has important practical significance for the planning of the sewage pipeline network. In this paper, the main factors affecting the generation of H2S in the sewage pipeline are analyzed; H2S generation prediction models are classified into two types of traditional statistics and machine learning, and their research progress is summarized; the potential research hotspots and difficulties of H2S prediction model are explored to provide a reference for establishment of H2S prediction model of municipal sewage pipeline.
-
Key words:
- municipal sewage pipeline /
- H2S /
- influencing factors /
- machine learning /
- prediction models
-
[1] YONGSIRI C, VOLLERTSEN J, HVITVED-JACOBSEN T.Influence of wastewater constituents on hydrogen sulfide emission in sewer networks[J].Journal of environmental engineering, 2005, 131(12):1676-1683. [2] 徐海明.间歇通气控制污水管道危害性气体应用探索研究[D].西安:西安建筑科技大学, 2018. [3] SALEHI R, CHAIPRAPAT S.Single-/triple-stage biotrickling filter treating a H2S-rich biogas stream:statistical analysis of the effect of empty bed retention time and liquid recirculation velocity[J].Journal of the Air & Waste Management Association, 2019, 69(12):1429-1437. [4] WU L, HU C, LIU W V.The sustainability of concrete in sewer tunnel:a narrative review of acid corrosion in the city of Edmonton, Canada[J].Sustainability, 2018, 10(2):517. [5] FYTIANOS G, BALTIKAS V, LOUKOVITIS D, et al.Biocorrosion of concrete sewers in Greece:current practices and challenges[J].Sustainability, 2020, 12(7):2638. [6] GARCÍA J T, GARCÍA-GUERRERO J M, CARRILLO J M, et al.Sanitation network sulfide modeling as a tool for asset management.The case of the city of Murcia (Spain)[J].Sustainability, 2020, 12(18):7643. [7] KAEMPFER W, BERNDT M.Polymer modified mortar with high resistance to acid to corrosion by biogenic sulfuric acid[C].Proceedings of the IXth Icpic Congress, Bologna, Italy, 14th, 1998. [8] EL BRAHMI A, ABDERAFI S.Hydrogen sulfide production assessment based on sewage physicochemical properties using artificial neural network[J].Mater Today Proc, 2020. [9] 邓丰, 王镇鑫, 许伟聪, 等.城市生活污水排水管道内硫化氢和甲烷产生机制综述[J].广东化工, 2012, 39:104-105. [10] ABBA S, HADI S J, SAMMEN S S, et al.Evolutionary computational intelligence algorithm coupled with self-tuning predictive model for water quality index determination[J].Journal of Hydrology, 2020, 587:124974. [11] ZUO Z, CHANG J, LU Z, et al.Hydrogen sulfide generation and emission in urban sanitary sewer in China:what factor plays the critical role?[J].Environmental Science:Water Research & Technology, 2019, 5(5):839-848. [12] NIELSEN A.Oxidation and precipitation of sulfide in sewer networks;Section of Environmental Engineering, Aalborg University[D].UNIPRINT, Aalborg University, 2005. [13] CARRERA L, SPRINGER F, LIPEME-KOUYI G, et al.A review of sulfide emissions in sewer networks:overall approach and systemic modelling[J].Water Science and Technology, 2016, 73(6):1231-1242. [14] 任南琪, 王爱杰, 赵阳国.废水厌氧生物处理中硫酸盐还原菌的生态学研究[M].北京:科学出版社, 2009. [15] 席劲瑛, 胡洪营, 罗彬, 等.城市污水处理厂主要恶臭源的排放规律研究[J].中国给水排水, 2006:99-103. [16] 陈卫, 宋佩娣, 郑兴灿, 等.污水系统中导致硫化氢中毒的影响因素与控制措施[J].给水排水, 2006:15-19. [17] SENGUPTA A.Preliminary Hydrogen Sulfide Emission Factors and Emission Models for Wastewater Treatment Plant Headworks[D].University of New Orleans, 2014. [18] YONGSIRI C, VOLLERTSEN J, HVITVED-JACOBSEN T.Effect of temperature on air-water transfer of hydrogen sulfide[J].Journal of Environmental Engineering, 2004, 130(1):104-109. [19] GERAGHTY P.Ireland's environmental protection agency act 1992:an overview[J].European Environment, 1993, 3(4):10-13. [20] SHERIEF M, ALY HASSAN A.The Impact of Wastewater Quality and Flow Characteristics on H2S Emissions Generation:Statistical Correlations and an Artificial Neural Network Model[J].Water, 2022, 14(5):791. [21] NIELSEN A H, VOLLERTSEN J, JENSEN H S, et al.Aerobic and anaerobic transformations of sulfide in a sewer system-field study and model simulations[J].Water Environment Research, 2008, 80(1):16-25. [22] 王智超.城市污水处理厂硫化氢排放特征及释放模型研究[D].北京:清华大学, 2013. [23] JIANG G, SUN X, KELLER J, et al.Identification of controlling factors for the initiation of corrosion of fresh concrete sewers[J].Water research, 2015, 80:30-40. [24] GUISASOLA A, SHARMA K R, KELLER J, et al.Development of a model for assessing methane formation in rising main sewers[J].Water Research, 2009, 43(11):2874-2884. [25] GUTIERREZ O, PARK D, SHARMA K R, et al.Effects of long-term pH elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms[J].Water research, 2009, 43(9):2549-2557. [26] HVITVED-JACOBSEN T.Sewer processes:microbial and chemical process engineering of sewer networks[M].CRC press, 2001. [27] SHARMA K, DE HAAS D W, CORRIE S, et al.Predicting hydrogen sulfide formation in sewers:a new model[J].Water, 2008, 35(2):132-137. [28] BORIES A, GUILLOT J-M, SIRE Y, et al.Prevention of volatile fatty acids production and limitation of odours from winery wastewaters by denitrification[J].Water research, 2007, 41(13):2987-2995. [29] 邓绪伟, 陶敏, 张路, 等.洞庭湖水体异味物质及其与藻类和水质的关系[J].环境科学研究, 2013, 26:16-21. [30] DEVAI I, DELAUNE R D.Emissions of reduced gaseous sulfur compounds from wastewater sludge:redox effects[J].Environmental engineering science, 2000, 17(1):1-8. [31] 李怀正, 张璐璇, 汤霞, 等.城市排水管道中硫化氢产气原因及影响因素分析[J].环境科学与管理, 2012, 37:95-97, 107. [32] BOON A G.Septicity in sewers:causes, consequences and containment[J].Water Science and Technology, 1995, 31(7):237-253. [33] JIANG G, KEATING A, CORRIE S, et al.Dosing free nitrous acid for sulfide control in sewers:results of field trials in Australia[J].Water research, 2013, 47(13):4331-4339. [34] DELGADO S, ALVAREZ M, RODRIGUEZ-GOMEZ L, et al.H2S generation in a reclaimed urban wastewater pipe.Case study:tenerife (Spain)[J].Water Research, 1999, 33(2):539-547. [35] SANTRY I.Hydrogen sulfide in sewers[J].Journal (Water Pollution Control Federation), 1963:1580-1588. [36] GUAN S.Synergistic protection against microbiologically influenced corrosion using a 100% solids polyurethane incorporated with anti-microbial agents.(2000) Available at:http://madisonchemical.com/pdf_tech_papers[J].Synergistic_Protection_Against_MIC.pdf.(Accessed:16th April 2015). [37] 吴迪.污水管道中硫化氢的形成实验及数学模型[D].西安:西安建筑科技大学, 2016. [38] FOLEY J, YUAN Z, LANT P.Dissolved methane in rising main sewer systems:field measurements and simple model development for estimating greenhouse gas emissions[J].Water Science and Technology, 2009, 60(11):2963-2971. [39] LAHAV O, SAGIV A, FRIEDLER E.A different approach for predicting H2S (g) emission rates in gravity sewers[J].Water research, 2006, 40(2):259-266. [40] GARCÍA DE LOMAS J, CORZO A, GONZALEZ J M, et al.Nitrate promotes biological oxidation of sulfide in wastewaters:experiment at plant-scale[J].Biotechnology and bioengineering, 2006, 93(4):801-811. [41] SUN J, NI B-J, SHARMA K R, et al.Modelling the long-term effect of wastewater compositions on maximum sulfide and methane production rates of sewer biofilm[J].Water research, 2018, 129:58-65. [42] JOSEPH A P, KELLER J, BUSTAMANTE H, et al.Surface neutralization and H2S oxidation at early stages of sewer corrosion:Influence of temperature, relative humidity and H2S concentration[J].Water research, 2012, 46(13):4235-4245. [43] SHARMA K R, YUAN Z, DE HAAS D, et al.Dynamics and dynamic modelling of H2S production in sewer systems[J].Water Research, 2008, 42(10/11):2527-2538. [44] KIM B, LEE J, JANG J, et al.Prediction on the seasonal behavior of hydrogen sulfide using a neural network model[J].TheScientificWorldJournal, 2011, 11:992-1004. [45] LI X, KHADEMI F, LIU Y, et al.Evaluation of data-driven models for predicting the service life of concrete sewer pipes subjected to corrosion[J].Journal of environmental management, 2019, 234:431-439. [46] JIANG G, KELLER J, BOND P L, et al.Predicting concrete corrosion of sewers using artificial neural network[J].Water research, 2016, 92:52-60. [47] POMEROY R D, PARKHURST J D.The forecasting of sulfide build-up rates in sewers[C].Eighth International Conference on Water Pollution Research, 1978:621-628. [48] LAHAV O, LU Y, SHAVIT U, et al.Modeling hydrogen sulfide emission rates in gravity sewage collection systems[J].Journal of environmental engineering, 2004, 130(11):1382-1389. [49] PARK K, LEE H, PHELAN S, et al.Mitigation strategies of hydrogen sulphide emission in sewer networks:a review[J].International Biodeterioration & Biodegradation, 2014, 95:251-261. [50] NIELSEN A H, HVITVED-JACOBSEN T, Vollertsen J.Kinetics and stoichiometry of sulfide oxidation by sewer biofilms[J].Water Research, 2005, 39(17):4119-4125. [51] MARLENI N, PARK K, LEE T, et al.A methodology for simulating hydrogen sulphide generation in sewer network using EPA SWMM[J].Desalination and Water Treatment, 2015, 54(4/5):1308-1317. [52] TIAN L, HAN C, ZHANG J, et al.Development of an H2S emission model for wastewater treatment plants[J].Journal of the Air & Waste Management Association, 2021, 71(10):1303-1311. [53] SALEHI R, CHAIPRAPAT S.Predicting H2S emission from gravity sewer using an adaptive neuro-fuzzy inference system[J].Water Quality Research Journal, 2022, 57(1):20-39. [54] ZHANG L, DE SCHRYVER P, De Gusseme B, et al.Chemical and biological technologies for hydrogen sulfide emission control in sewer systems:a review[J].Water research, 2008, 42(1/2):1-12. [55] 芮栋妮, 马燕燕, 叶林.机器学习方法在污水处理系统中的应用[J].环境工程, 2022, 40(6):145-153. [56] YIN W, YUAN Y, CHEN F, et al.High-precision prediction of unionized hydrogen sulfide generation based on limited datasets and its impact on anaerobic digestion of sulfate-rich wastewater[J].Journal of Cleaner Production, 2022, 341:130875. [57] REGE M A, W.TOCK R.A simple neural network for estimating emission rates of hydrogen sulfide and ammonia from single point sources[J].Journal of the Air & Waste Management Association, 1996, 46(10):953-962. [58] MJALLI F S, AL-ASHEH S, ALFADALA H E.Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance[J].Journal of Environmental Management, 2007, 83(3):329-338. [59] NOURANI V, ELKIRAN G, ABBA S I.Wastewater treatment plant performance analysis using artificial intelligence:an ensemble approach[J].Water Science and Technology, 2018, 78(10):2064-2076. [60] XU R Z, CAO J S, WU Y, et al.An integrated approach based on virtual data augmentation and deep neural networks modeling for VFA production prediction in anaerobic fermentation process[J].Water Research, 2020, 184:116103. [61] ZAGHLOUL M S, IORHEMEN O T, HAMZA R A, et al.Development of an ensemble of machine learning algorithms to model aerobic granular sludge reactors[J].Water Research, 2021, 189:116657.
点击查看大图
计量
- 文章访问数: 168
- HTML全文浏览量: 35
- PDF下载量: 5
- 被引次数: 0