RESEARCH PROGRESS OF SELF-ACTUATED MICRO/NANOROBOTS IN WASTEWATER TREATMENT
-
摘要: 近年来,随着对微纳机器人的研究更加深入,利用自驱动微纳机器人可调的表面化学性质,通过表面反应产生大量的微纳米气泡,在微观尺度上混合液体,从而能够有效地吸附或降解污染水中的有毒化学物质。特别地,在清洁传统方法难以触及的小管道或腔体中的污水处理方面,优势明显。综述了近年来国内外自驱动微纳机器人在污水处理方面的研究进展。介绍了自驱动微纳机器人的制备及驱动方式,总结了自驱动微纳机器人在监测水环境及高效处理污水方面的应用,主要包括自驱动微纳机器人吸附重金属离子、降解有机污染物、定向运输油滴及微塑料降解4个方面;探讨了微纳机器人在燃料材料方面的依赖性和实际环境应用的局限性,并结合其优缺点对未来的发展方向做进一步展望。Abstract: In recent years, with the deepening research on micro/nanorobots, more and more researchers have found that self-actuated micro/nano robots have their unique advantages in sewage treatment. Self-actuated micro/nanorobots can effectively adsorb or degrade toxic chemicals in polluted water by using their tunable surface chemistry to generate large quantities of micro/nanobubbles through surface reactions and mixing liquids at microscopic scales. In particular, it has obvious advantages in cleaning sewage treatment in small pipes or cavities that are difficult to reach by traditional methods. This paper reviews the research progress of self-actuated micro/nanorobots in wastewater treatment in recent years. First, the preparation and driven mode of the self-actuated micro/nanorobot was introduced, and the applications of the self-actuated micro/nanorobot on monitoring of water environment and efficient sewage treatment were summarized, mainly including adsorption of heavy metal ions, decomposition of organic pollutants, directional transportation oil droplets and degradation of microplastic; the dependence of self-actuated micro/nanorobots on fuel materials and the limitations of practical environment applications were discussed. Combined with their advantages and disadvantages, the future development direction was further prospected and summarized. In short, with the continuous breakthroughs in relevant key technologies and the continuous research and development of new self-actuated micro-nanorobots, self-actuated micro-nanorobots will play an increasingly important role in environmental protection and other fields.
-
Key words:
- microrobot /
- nanorobot /
- self-actuated /
- sewage treatment /
- environmental protection
-
[1] LOUDIERE D, GOURBESVILLE P.World water development report-water and climate change[J].Houille Blanche-revue Internationale De L Eau, 2020, (3):76-81. [2] HAN D M, CURRELL M J, CAO G L.Deep challenges for China's war on water pollution[J].Environmental Pollution, 2016, 218:1222-1223. [3] 雷晓东, 熊蓉春, 魏刚.膜分离法污水处理技术[J].工业水处理, 2002, (2):1-3. [4] ZHANG X D, ZUO K C, ZHANG X R, et al.Selective ion separation by capacitive deionization (CDI) based technologies:a state-of-the-art review[J].Environmental Science:Water Research & Technology, 2020, 6(2):243-257. [5] 金泳勋, 松田光明, 董晓辉, 等.用浮选法从废锂离子电池中回收锂钴氧化物[J].国外金属矿选矿, 2003(7):32-37. [6] VERMA A K, DASH R R, BHUNIA P.A review on chemical coagulationflocculation technologies for removal of colour from textile wastewaters[J].Journal of Environmental Management, 2012, 93(1):154-168. [7] 陈毓源.氧化还原介体强化焦化废水深度处理研究[D].太原:山西大学, 2021. [8] 左冰.微电解技术在电镀废水处理中的应用[J].中国资源综合利用, 2021, 39(11):195-197. [9] PRONK M, de KREUK M K, de BRUIN B, et al.Full scale performance of the aerobic granular sludge process for sewage treatment[J].Water Research, 2015, 84:207-217. [10] 夏恺成, 周智超, 陈长秋.我国农村生活污水厌氧生物处理技术及其应用进展[J].山东化工, 2021, 50(17):109-111. [11] 焕英王, 春晖杜.探究城市生活污水处理技术现状及对策[J].工程技术研究, 2022, 4(2):187-189. [12] SOTO F, KARSHALEV E, ZHANG F, et al.Smart Materials for Microrobots[J].Chemical Reviews.2022, 122(5):5365-5403. [13] YING Y, PUMERA M.Micro-nanomotors for water purification[J].Chemistry, 2019, 25(1):106-121. [14] SHIVALKAR S, GAUTAM P K, CHAUDHARY S, et al.Recent development of autonomously driven micro/nanobots for efficient treatment of polluted water[J].Journal of Environmental Management, 2021, 281:11750. [15] WANG W, CASTRO L A, HOYOS M, et al.Autonomous motion of metallic microrods propelled by ultrasound[J].ACS Nano, 2012, 6(7):6122-6132. [16] MEI Y, HUANG G, SOLOVEV A A, et al.Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers[J].Advanced Materials, 2008, 20(21):4085-4090. [17] NICEWARNER-PENA S R, FREEMAN R G, REISS B D, et al.Submicrometer metallic barcodes[J].Science (New York, N.Y.), 2001, 294(5540):137-141. [18] BARABAN L, MakarOV D, STREUBEL R, et al.Catalytic janus motors on microfluidic chip:deterministic motion for targeted cargo delivery[J].ACS Nano, 2012, 6(4):3383-3389. [19] HOOP M, SHEN Y, CHEN X, et al.Magnetically driven silver-coated nanocoils for efficient bacterial contact killing[J].Advanced Functional Materials, 2016, 26(7):1063-1069. [20] DAI B, WANG J, XIONG Z, et al.Programmable artificial phototactic microswimmer[J].Nature, Nanotechnology, 2016, 11(12):1087-1092. [21] SHAO J, XUAN M, ZHANG H, et al.Chemotaxis-guided hybrid neutrophil micromotor for actively targeted drug transport[J].Angewandte Chemie, 2017, 129(42):13115-13119. [22] DONG M, WANG X, CHEN X Z, et al.D-printed soft magnetoelectric microswimmers for delivery and differentiation of neuron-like cells[J].Advanced Functional Materials, 2020, 30(17):191323. [23] 李娜娜, 郑旭, 李战华.复杂流体中微马达自扩散泳特性的实验研究[J].实验流体力学, 2020, 34(2):99-106. [24] SARCLETTI M, PARK H, WIRTH J, et al.The remediation of nano-microplastics from water[J].Materials Today, 2021, 48:38-46. [25] BELADI-MOUSAVI S M, HERMANOVÁ S, YING Y, et al.A maze in plastic wastes:autonomous motile photocatalytic microrobots against microplastics[J].ACS Applied Materials & Interfaces, 2021, 13(21):25102-25110. [26] 刘畅.氧气微纳米气泡在处理微污染水中污染物方面的研究[D].合肥:安徽建筑大学. [27] SOLER L, MAGDANZ V, FOMIN V M, et al.Self-propelled micromotors for cleaning polluted water[J].ACS Nano, 2013, 7(11):9611-9620. [28] CALVO-MARZAL P, SATTAYASAMITSATHIT S, BALASUBRAMANIAN S, et al.Propulsion of nanowire diodes[J].Chemical Communications, 2010, 46(10):1623-1624. [29] COLLINS C M, YANG B, YANG Q X, et al.Numerical calculations of the static magnetic field in three-dimensional multi-tissue models of the human head[J].Magnetic Resonance Imaging, 2002, 20(5):413-424. [30] MAGGI C, SAGLIMBENI F, DIPALO M, et al.Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects[J].Nature Communications, 2015, 6(1):7855. [31] GARCIA-GRADILLA V, OROZCO J, SATTAYASAMITSATHIT S, et al.Functionalized ultrasound-propelled magnetically guided nanomotors:toward practical biomedical applications[J].ACS nano, 2013, 7(10):9232-9240. [32] VILELA D, PARMAR J, ZENG Y, et al.Graphene-based microbots for toxic heavy metal removal and recovery from water[J].Nano Letters, 2016, 16(4):2860-2866. [33] 李敦毅.高效液相色谱在水环境监测中的应用[J].清洗世界, 2021, 37(3):58-59. [34] 胡月, 李强.气相色谱-质谱联用检测环境有机污染物[J].资源节约与环保, 2018(4):58-58. [35] 高婵.过渡金属氧化物纳米材料在高通量质谱检测环境污染物中的应用研究[D].长沙:湖南大学, 2019. [36] PARMAR J, VILELA D, VILLA K, et al.Micro- and nanomotors as active environmental microcleaners and sensors[J].Journal of the American Chemical Society, 2018, 140(30):9317-9331. [37] KAGAN D, CALVO-MARZAL P, BALASUBRAMANIAN S, et al.Chemical sensing based on catalytic nanomotors:motion-based detection of trace silver[J].Journal of the American Chemical Society, 2009, 131(34):12082-12083. [38] MOO J G S, WANG H, ZHAO G, et al.Biomimetic artificial inorganic enzyme-free self-propelled microfish robot for selective detection of Pb2+ in water[J].Chemistry-A European Journal, 2014, 20(15):4292-4296. [39] ROJAS D, JURADO-SÁNCHEZ B, ESCARPA A.Shoot and sense" janus micromotors-based strategy for the simultaneous degradation and detection of persistent organic pollutants in food and biological samples[J].Analytical Chemistry, 2016, 88(7):4153-4160. [40] JURADO-SÁNCHEZ B, ESCARPA A.millimicro and nanomotors:novel analytical tools for real-world applications[J].TrAC Trends in Analytical Chemistry, 2016, 84:48-59. [41] UYGUN D A, JURADO-SÁNCHEZ B, UYGUN M, et al.Self-propelled chelation platforms for efficient removal of toxic metals[J].Environmental Science:Nano, 2016, 3(3):559-566. [42] HOU T, YU S, ZHOU M, et al.Effective removal of inorganic and organic heavy metal pollutants with poly(amino acid)-based micromotors[J].Nanoscale, 2020, 12(8):5227-5232. [43] VILLA K, PARMAR J, VILELA D, et al.Metal-oxide-based microjets for the simultaneous removal of organic pollutants and heavy metals[J].ACS Applied Materials & Interfaces, 2018, 10(24):20478-20486. [44] ZHANG Z, ZHAO A, WANG F, et al.Design of a plasmonic micromotor for enhanced photo-remediation of polluted anaerobic stagnant waters[J].Chemical Communications, 2016, 52(32):5550-5553. [45] OROZCO J, CHENG G, VILELA D, et al.Micromotor-based high-yielding fast oxidative detoxification of chemical threats[J].Angewandte Chemie International Edition, 2013, 52(50):13276-13279. [46] MARIC T, NASIR M Z M, MAYORGA-MARTINEZ C C, et al.Cloisite microrobots as self-propelling cleaners for fast and efficient removal of improvised organophosphate nerve agents[J].ACS Applied Materials & Interfaces, 2019, 11(35):31832-31943. [47] LESLIE H A, VAN VELZEN M J, BRANDSMA S H, et al.Discovery and quantification of plastic particle pollution in human blood[J].Environment International, 2022, 163:107199. [48] SARCLETTI M, PARK H, WIRTH J, et al.The remediation of nano-microplastics from water[J].Materials Today, 2021, 48:38-46. [49] LI W, WU C, XIONG Z, et al.Self-driven magnetorobots for recyclable and scalable micro/nanoplastic removal from nonmarine waters[J].Sci Adv.2022, 8(45):e1731. [50] GUIX M, OROZCO J, GARCÍA M, et al.Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil[J].ACS nano, 2012, 6:4445-4451. [51] SINGH A K, BHUYAN T, MAITY S, et al.Magnetically actuated carbon soot nanoparticle-based catalytic CARBOts coated with NiPt nanofilms for water detoxification and oil-spill recovery[J].ACS Applied Nano Materials, 2020, 3(4):3459-3470. [52] NOVOTNY F, PUMERA M.Nanomotor tracking experiments at the edge of reproducibility[J].Scientific Reports, 2019, 9(1):13222. [53] MOO J G S, MAYORGA-MARTINEZ C C, WANG H, et al.Bjerknes Forces in motion:long-range translational motion and chiral directionality switching in bubble-propelled micromotors via an ultrasonic pathway[J].Advanced Functional Materials, 2018, 28(25):1702618. [54] ESKANDARLOO H, KIERULF A, ABBASPOURRAD A.Light-harvesting synthetic nano- and micromotors:a review[J].Nanoscale, 2017, 9(34):12218-12230. [55] WANG H, PUMERA M.Micronanomachines and living biosystems:from simple interactions to microcyborgs[J].Advanced Functional Materials, 2018, 28(25):1705421. [56] JANG B, WANG W, WIGET S, et al.Catalytic locomotion of core-shell nanowire motors[J].ACS Nano, 2016, 10(11):9983-9991. [57] CASADO-RIVERA E, GÁL Z, ANGELO A C D, et al.Electrocatalytic oxidation of formic acid at an ordered intermetallic PtBi surface[J].ChemPhysChem, 2003, 4(2):193-199. [58] ZHAO G, SANCHEZ S, SCHMIDT O G, et al.Poisoning of bubble propelled catalytic micromotors:the chemical environment matters[J].Nanoscale, 2013, 5(7):2909-2914. [59] TEO W Z, ZBORIL R, MEDRIK I, et al.Fe0 nanomotors in ton quantities (1020 units) for environmental remediation[J].Chemistry-A European Journal, 2016, 22(14):4789-4793. [60] SAHOO A K, SAILAPU S K, DUTTA D, et al.DNA-templated single thermal cycle based synthesis of highly luminescent Au nanoclusters for probing gene expression[J].ACS Sustainable Chemistry & Engineering, 2018, 6(2):2142-2151. [61] VILLA K, VIKTOROVA J, PLUTNAR J, et al.Chemical microrobots as self-propelled microbrushes against dental biofilm[J].Cell Reports Physical Science, 2020, 1(9):100181.
点击查看大图
计量
- 文章访问数: 180
- HTML全文浏览量: 16
- PDF下载量: 7
- 被引次数: 0