APPLICATION OF SHORT-RANGE PRECISION AERATION AND INTELLIGENT CONTROL SYSTEM IN SEWAGE TREATMENT PLANT
-
摘要: 短程精准曝气智能控制工艺模型摒弃了依靠DO单一数据控制风量的传统控制模式,锚定生化池出水氨氮,包含全自动数据采集与智能控制的工艺模型算法及成套设备。其在汕头1.2万t/d污水处理厂的应用实践结果表明,其可使出水指标稳定达标,可将氨氮目标值控制在0.7~2.8 mg/L范围内;同等条件下,自动运行后单位总还原物需氧的耗能更优,氧利用效率提高约11%;在进水还原物质浓度偏低的情况下,可自动匹配低风量区间,可平均节省18.85%的风量。Abstract: The short-range precise aeration and intelligent control process model abandons the traditional control mode that relies on single DO data to control air volume. Anchoring ammonia nitrogen at the outlet of the biochemical tank, it developed a process model algorithm and a complete set of equipment for automatic data acquisition and intelligent control. In the application practice of a sewage treatment plant with a capacity of 12,000 tons per day in Shantou, the effluent index stably complied with the standard, and the target value of ammonia nitrogen concentration was controlled within 0.7 to 2.8 mg/L. Under the same condition, the aerobic energy consumption per unit of total reductive matters after the automatic operation was better, and the oxygen utilization efficiency was increased by about 11%. In the case of low intake reduction material, the low air volume interval can be automatically matched, and the average air volume can be saved by 18.85%.
-
Key words:
- short range /
- precision aeration /
- intelligent control /
- ammonia nitrogen /
- sewage treatment plant
-
[1] 何元浦, 范海涛, 刘国华, 等.污水生物处理过程中曝气控制策略的研究进展及趋势[J].环境工程, 2021, 39(6):34-41. [2] 郭世海.污水厂曝气系统的优化控制研究[D].昆明:昆明理工大学, 2017. [3] 赵雅然, 李媛, 张飞凤.曝气精确控制系统(AVS)在污水生化处理系统中的应用[J].工程建设与设计, 2019(10):127-128. [4] 胡田力, 邱叶林, 韩宝平.基于AAO工艺的智能曝气系统设计与调试[J].净水技术, 2020, 39(10):37-42, 57. [5] 胡志荣, 卢欢亮, 杜惟玮, 等.应用工艺模拟改善佛山市高明区第一污水处理厂的运行管理[J].给水排水, 2013, 49(11):105-109. [6] 郝二成, 郭毅, 刘伟岩, 等.基于数学模拟的污水厂运行分析:控制与优化[J].中国给水排水, 2020, 36(17):23-29. [7] 李传举, 余云龙.精确曝气控制技术在城镇污水处理厂中的应用[C]//中国城市科学研究会, 中国城镇供水排水协会, 海南省住房和城乡建设厅, 海口市人民政府.第十二届中国城镇水务发展国际研讨会与新技术设备博览会论文集.《城镇供水》杂志社, 2017:4. [8] 万春萌.污水处理精确曝气控制系统研究及应用[D].青岛:青岛科技大学, 2019. [9] 王硕, 徐巧, 李伟光, 等.浅谈精确曝气控制研究与应用现状[J].环境科学与技术, 2016, 39(增刊2):321-325. [10] 张星洲, 鲁思迪, 施巍松.边缘智能中的协同计算技术研究[J].人工智能, 2019, 12(5):55-67.
点击查看大图
计量
- 文章访问数: 375
- HTML全文浏览量: 43
- PDF下载量: 21
- 被引次数: 0