REVIEW OF URBAN NON-POINT SOURCE POLLUTION CONTROL TECHNOLOGIES AND OPTIMIZATION STRATEGIES
-
摘要: 在我国城镇面源污染负荷占比不断增加的压力下,优化城镇面源污染控制技术,对保障城镇水系统安全至关重要。对国内外近20年城镇面源污染控制技术的相关研究进行了文献计量学分析,综述了针对不同下垫面类型、排水体制、降雨特征各情况下城镇面源污染控制优化策略,总结出"绿-灰-蓝"设施组合、"源-网-厂-河""源头排水-小排水-大排水"等优化方案,最大程度地发挥"源头-过程-末端"的全过程面源污染防控体系,以得到最优的面源污染控制效果,旨在为城镇面源污染控制提供技术思路。Abstract: Under the pressure of the increasing urban non-point source pollution load in China, it is crucial to optimize urban non-point source pollution control technologies to ensure the safety of urban water systems. In this study, a bibliometric analysis of global relevant research on urban non-point source pollution control technologies in the last 20 years was conducted. The optimization strategies for urban non-point source pollution control under different underlying surface conditions, drainage systems, and rainfall characteristics were summarized. This included the optimization schemes of the "green-gray-blue" combination, "source-network-plant-river", and "source drainage-small drainage-large drainage". These schemes aim to maximize the effectiveness of the comprehensive non-point source pollution prevention system that encompasses the entire process from source to end. The study provides insights for the control of urban non-point source pollution.
-
[1] 陆松柳,章烨.城市面源污染影响因子及控制技术的研究现状与展望[J].城市道桥与防洪,2018(7):250-254. [2] 陈朋铭.下垫面蓄水性与海绵城市功能评价初步研究[D].桂林:桂林理工大学,2021. [3] LI L, BAI Y. Impact of urban land-use change on surface water pollution[J]. Desalination and Water Treatment, 2021,241:276-281. [4] 马英.城市降雨径流面源污染输移规律模拟及初始冲刷效应研究[D].广州:华南理工大学,2012. [5] 张海行.海绵城市低影响开发典型山城径流效应研究[D].邯郸:河北工程大学,2016. [6] 张千千,李向全,王效科,等.城市路面降雨径流污染特征及源解析的研究进展[J].生态环境学报,2014(2):352-358. [7] CHAMIZO S, RODRIGUEZ-CABALLERO E, ROMAN J R, et al. Effects of biocrust on soil erosion and organic carbon losses under natural rainfall[J]. Catena, 2017, 148: 117-125. [8] 李定强,刘嘉华,袁再健,等.城市低影响开发面源污染治理措施研究进展与展望[J].生态环境学报, 2019,28(10):2110-2118. [9] 葛铭坤.我国面源污染治理理论和措施研究综述[J].水利规划与设计,2020(3):24-28. [10] 杨青娟,朱钢.雨水管网和城市绿地的协同优化设计研究[J].中国给水排水,2014,30(7):94-98. [11] 许迪. SWMM模型综述[J].环境科学导刊,2014,33(6):23-26. [12] 梅超,刘家宏,王浩,等.SWMM原理解析与应用展望[J].水利水电技术,2017,48(5):33-42. [13] BAKHSHIPOUR A E, DITTMER U, HAGHIGHI A, et al. Hybrid green-blue-gray decentralized urban drainage systems design, a simulation-optimization framework[J]. Jounal of Environmental Management, 2019,249: 109364. [14] AHIABLAME L M, ENGEL B A, CHAUBEY I. Effectiveness of low impact development practices: literature review and suggestions for future research[J]. Water, Air, & Soil Pollution, 2012,223(7): 4253-4273. [15] WANG Z B, QI F, LIU L Y, et al. How do urban rainfall-runoff pollution control technologies develop in China? A systematic review based on bibliometric analysis and literature summary[J]. Science of the Total Environment, 2021,789: 148045. [16] 吴亚刚.西安市文教区不同下垫面径流污染特征[D].西安:长安大学,2018. [17] 何强,潘伟亮,王书敏,等.山地城市典型硬化下垫面暴雨径流初期冲刷研究[J].环境科学学报,2014,34(4):959-964. [18] 张香丽,赵志杰,秦华鹏,等.常州市不同下垫面污染物冲刷特征[J].北京大学学报(自然科学版), 2018, 54(3): 644-654. [19] 邹敏.下垫面结构变化对城市建设项目综合径流系数的影响[D].北京:北京林业大学,2018. [20] 李纳,王军霞,唐桂刚,等.基于下垫面的城市面源污染负荷监测技术研究[J].广州化工,2014,42(8):140-143. [21] 陈珂珂,何瑞珍,梁涛,等.基于"海绵城市"理念的城市绿地优化途径[J].水土保持通报,2016, 36(3):258-264. [22] 王和意,刘敏,刘华林,等.城市降雨屋面径流污染分析和管理控制[J].长江流域资源与环境,2005,14(3):367-371. [23] 李家轩,李兆华.武汉市春季屋顶径流水质特征分析[J].湖北大学学报(自然科学版),2019,41(4):364-369. [24] 刘洁灵,贾一非,王沛永.绿色屋顶在高寒地区海绵化改造中的应用[J].中国城市林业,2022,20(3):127-132. [25] SHAFIQUE M, KIM R, RAFIQ M. Green roof benefits, opportunities and challenges:a review[J]. Renewable and Sustainable Energy Reviews, 2018,90:757-773. [26] SHAFIQUE M, KIM R, KYUNG-HO K. Green roof for stormwater management in a highly urbanized area: the case of Seoul, Korea[J]. Sustainability, 2018,10:584. [27] 周倩倩,苏炯恒,王雁.海绵城市建设下LID模拟研究综述及案例分析[J].广东工业大学学报, 2019,36(1):93-99. [28] 伍发元.我国城市面源污染多层控制模式研究[D].武汉:武汉大学,2004. [29] 何涛.大型公共建筑雨水回收利用技术研究[D].重庆:重庆交通大学,2019. [30] 倪永炯,李军,韦甦,等.城市小型景观水体水质控制生态工程案例[J].中国给水排水,2017,33(12):40-44. [31] 姚仕明,岳红艳.长江中下游生态护岸工程发展趋势浅析[J].中国水利,2012(6):18-21. [32] XAVIER M L M, JANZEN J G, NEPF H. Numerical modeling study to compare the nutrient removal potential of different floating treatment island configurations in a stormwater pond[J]. Ecological Engineering, 2018,111:78-84. [33] NURUZZAMAN M D, FAISAL ANWAR A H M, SARUKKALIGE R. Review of hydraulics of Floating Treatment Islands retrofitted in waterbodies receiving stormwater[J]. Science of the Total Environment, 2021, 801:149526. [34] 金竹静.滇池流域复合型河流污染成因诊断及治理技术研究与应用[D].上海:上海交通大学,2020. [35] 中华人民共和国住房城乡建设部. 海绵城市建设技术指南:低影响开发雨水系统构建[S].北京:中国建筑工业出版社,2014:31-47. [36] 汉京超.城市雨水径流污染特征及排水系统模拟优化研究[D].上海:复旦大学,2013. [37] 邢玉坤.我国排水管网点源污染问题分析及截流系统设计研究[D].北京:北京建筑大学,2020. [38] 周奕帆.合流制排水管网雨污分流改造方法[J].四川建材,2021,47(9):186-187. [39] 吴宇凡.老城区合流制排水体制改造方案的选择及优化研究[D].长沙:湖南大学,2020. [40] 赵一涛.城市雨污分流改造的问题及其技术措施研究[J].四川建材,2023,49(1):222-224. [41] 黄瑜琪.合流制排水系统最优截流关系分析与研究[D].苏州:苏州科技大学,2017. [42] 顾勤良,邓科,周益洪.暴雨强度拟合法确定旱季合流制污水量截流倍数[J].净水技术,2008,27(3):14-16. [43] 熊鸿斌,冯晨潇.基于MIKE11的合流制截流倍数优化[J].合肥工业大学学报(自然科学版),2023,46(3):371-377. [44] 王盼,柯杭,陈嫣.基于InfoWorks CS模型的合流制排水系统截流规模[J].净水技术,2019,38(4)54-58. [45] 张超,姜应和.合流制排水系统截流倍数优选[J].环境工程学报, 2015, 9(6):2771-2776. [46] 孙全民,胡湛波,李志华,等.基于SWMM截流式合流制管网溢流水质水量模拟[J].给水排水,2010,46(7):175-179. [47] 黄维.重庆地区小城镇合流制排水系统截流倍数研究[D].重庆:重庆大学,2014. [48] JIN X, JIANG Y H, JIN J H. Interception ratio optimal selection aided by micro-scope hydraulic and quality simulation[J]. Advanced Materials Research, 2010,113/114/115/116:119-125. [49] 郑岩杭,李翠梅,黄瑜琪.合流污水系统最优截流倍数研究[J].水利水电技术,2020,51(10):173-179. [50] 王武,钟江丽,郜会彩.基于双目标函数的合流制排水系统截流倍数优化[J].中国给水排水,2022,38(9):133-138. [51] 黄瑞晶,于磊,葛俊,等.城市副中心合流制管网不同截流形式效果模拟研究[J].北京水务, 2021(5):39-43. [52] 洪国渊.合流制改造策略与截流设施污染控制能力研究[D].北京:北京建筑大学,2022. [53] 李胜海,戴玉苗,张启友.不同污水截流井型式的设计比较与优化初探[J].山西建筑,2008,34(5):221-222. [54] 黄俊,王莉,高丽红,等.基于溢流频次的合流制溢流污染控制优化策略研究[J].环境污染与防治,2021,43(3):394-399. [55] 于磊,马盼盼,潘兴瑶,等.海绵城市源头措施对合流制溢流的减控效果研究[J].北京师范大学学报(自然科学版),2019,55(4):476-480. [56] CHOW M F, YUSOP Z. Sizing first flush pollutant loading of stormwater runoff in tropical urban catchments[J]. Environmental Earth Sciences, 2014, 72(10): 4047-4058. [57] 葛乐乐,易莹,周艳伟,等.合流制溢流污染控制研究进展[J].能源与环境,2022(2):105-107. [58] PETRUCK A, PETRUCK A, REDDER A, et al. Real time control of a combined sewer system using radar-measured precipitation-results of the pilot study[J]. Water Sci Technol, 2003, 47(7/8):365-70. [59] BONG C H J, LAU T L, GHANI A, et al. Sediment deposit thickness and its effect on critical velocity for incipient motion[J]. Water Science and Technology, 2016,74(8): 1876-1884. [60] 潘国庆.不同排水体制的污染负荷及控制措施研究[D].北京:北京建筑大学,2007. [61] 陈逸,石立国,周亚超,等.地下管道清淤技术在城市水环境治理中的应用[J].施工技术,2020,49(18):16-19. [62] 陈春霄,战玉柱,吴述园,等.城市分流制排水系统中管网混接污染控制方案的优化选择[J].净水技术,2018,37(增刊1):217-220,229. [63] 秦捷.上海市分流制地区雨污混接原因及改造方案的探究[J].城镇供水,2020(3):77-80. [64] 张腾卓,叶子涵,姜天琪,等.初期雨水径流污染及治理[J].轻工科技,2022,38(1):81-84. [65] 刘晓丹,詹翱,文贤儿.初期雨水污染常态化管控对策研究[J].环境保护,2022,50(19):61-64. [66] 王春.武汉市东西湖区城市排水管网典型"病因"诊断技术研究[D].武汉:湖北工业大学,2021. [67] 刘起鹏.城市排水管道检测技术的应用与发展[J].城市建筑,2019,16(3):148-149. [68] SHEHAB-ELDEEN T. An Automated System for Detection, Classification and Rehabilitation of Defects in Sewer Pipes[D].Canada: Concordia University,2001. [69] ZHAO Z C, YIN H L, XU Z X, et al. Pin-pointing groundwater infiltration into urban sewers using chemical tracer in conjunction with physically based optimization model[J]. Water Research, 2020,175:115689. [70] 马学琳,李洪波,罗宁,等.城市地表径流污染研究[J].中国资源综合利用,2021,39(5):112-114. [71] 李思远,管运涛,陈俊,等.苏南地区合流制管网溢流污水水质特征分析[J].给水排水,2015,51(增刊1):344-348. [72] 王生愿,陈江海,陈小龙.基于降水等级分异方法的低影响开发小区雨水径流污染负荷削减率的评估[J].环境工程技术学报,2022,12(5):1492-1499. [73] 乔梦曦.区域开发不同尺度雨水系统关系研究[D].北京:北京建筑大学,2013. [74] 杨润泽,冯天骄,肖辉杰,等.京郊强降雨条件下不同水土保持治理措施配置模式效益评价[J].水土保持学报,2022, 36(1):8-17. [75] 赵丰昌,章林伟,高伟.海绵城市理念下城市内涝防治体系构建的探讨[J].给水排水,2021,57(8):37-44.
点击查看大图
计量
- 文章访问数: 320
- HTML全文浏览量: 38
- PDF下载量: 28
- 被引次数: 0