中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市面源污染特点与控制技术研究进展

肖晨曦 王红武 戴晓虎

肖晨曦, 王红武, 戴晓虎. 城市面源污染特点与控制技术研究进展[J]. 环境工程, 2023, 41(12): 21-31. doi: 10.13205/j.hjgc.202312003
引用本文: 肖晨曦, 王红武, 戴晓虎. 城市面源污染特点与控制技术研究进展[J]. 环境工程, 2023, 41(12): 21-31. doi: 10.13205/j.hjgc.202312003
XIAO Chenxi, WANG Hongwu, DAI Xiaohu. A REVIEW OF CHARACTERISTICS AND CONTROL TECHNOLOGIES OF URBAN NON-POINT SOURCE POLLUTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 21-31. doi: 10.13205/j.hjgc.202312003
Citation: XIAO Chenxi, WANG Hongwu, DAI Xiaohu. A REVIEW OF CHARACTERISTICS AND CONTROL TECHNOLOGIES OF URBAN NON-POINT SOURCE POLLUTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 21-31. doi: 10.13205/j.hjgc.202312003

城市面源污染特点与控制技术研究进展

doi: 10.13205/j.hjgc.202312003
基金项目: 

国家重点研发计划项目(2021YFC3201500)

国家重点研发计划项目(2021YFC3201300)

详细信息
    作者简介:

    肖晨曦(2000-),男,在读研究生,主要研究方向为面源污染控制。2230564@tongji.edu.cn

    通讯作者:

    王红武 (1970-),女,博士,副教授,主要研究方向为面源污染控制。wanghongwu@tongji.edu.cn

A REVIEW OF CHARACTERISTICS AND CONTROL TECHNOLOGIES OF URBAN NON-POINT SOURCE POLLUTION

  • 摘要: 在中国水环境治理过程中,降雨径流产生的面源污染(non-point source pollution)导致严重的河道黑臭等环境污染问题受到广泛关注和研究。面源污染依据下垫面不同主要分为农业面源污染和城市面源污染。基于国内外城市径流污染相研究成果,从城市径流污染特征、污染负荷模型和治理技术与成效3个方面做了总结。中国城市径流中污染物以SS为主,浓度达到200 mg/L以上,且COD、TP和TN均远远超过排放标准。同时,径流中也检出了微塑料和重金属。对比分析了国内应用最为广泛的面源负荷模型,并给出了各自的优缺点及应用场景。收集了近年来的面源污染治理的技术与成效,并总结其局限性。指出未来研究可从GIS耦合、技术组合优化、厂网河调度以及全过程治理开展。
  • [1] 赵敏华, 龚屹巍. 上海苏州河治理20年回顾及成效[J]. 中国防汛抗旱, 2018, 28(12): 38-41.
    [2] XU Z, XU J, YIN H, et al. Urban river pollution control in developing countries[J]. Nature Sustainability, 2019, 2(3): 158-160.
    [3] Anonymous. News briefs: the national water quality inventory does not accurately portray water quality conditions nationwide[J]. Environmental Science & Technology, 2000, 34(13): 295A.
    [4] 侯培强, 王效科, 郑飞翔, 等. 我国城市面源污染特征的研究现状[J]. 给水排水, 2009, 45(增刊1): 188-193.
    [5] OPHER T, FRIEDLER E. Factors affecting highway runoff quality[J]. Urban Water Journal, 2010, 7(3): 155-172.
    [6] 张枭雄. 我国城市道路面源污染途径及特点[J]. 居舍, 2019(30): 196.
    [7] SMULLEN J T, SHALLCROSS A L, CAVE K A. Updating the U.S. Nationwide urban runoff quality data base[J]. Water Science and Technology, 1999, 39(12): 9-16.
    [8] 孙华灿. 城市道路网络发展达标可行性分析及思考:以江苏省为例[J]. 江苏科技信息, 2017(33): 47-49.
    [9] 丁程程, 刘健. 中国城市面源污染现状及其影响因素[J]. 中国人口·资源与环境, 2011, 21(增刊1): 86-89.
    [10] 葛铭坤. 我国面源污染治理理论和措施研究综述[J]. 水利规划与设计, 2020(3): 24-28.
    [11] 余麟, 韩龙, 周连宁, 等. 深圳市城市道路地表污染物分析研究[J]. 环境科学与管理, 2016, 41(2): 101-104

    ,120.
    [12] 李敦柱, 刘安, 李思远, 等. 道路径流差异性对面源污染控制的影响[J]. 环境科学与技术, 2016, 39(1): 101-107.
    [13] 刘晓丹, 詹翾, 文贤儿. 初期雨水污染常态化管控对策研究[J]. 环境保护, 2022, 50(19): 61-64.
    [14] 万帆, 甄伟, 吴海涛, 等. 城市地表径流面源污染分析研究:以武汉市典型下垫面为例[J]. 工业安全与环保, 2022, 48(1): 70-74

    ,98.
    [15] 倪艳芳. 城市面源污染的特征及其控制的研究进展[J]. 环境科学与管理, 2008(2): 53-57.
    [16] ARYAL R, VIGNESWARAN S, KANDASAMY J, et al. Urban stormwater quality and treatment[J]. Korean Journal of Chemical Engineering, 2010, 27(5): 1343-1359.
    [17] 韩冰, 王效科, 欧阳志云. 城市面源污染特征的分析[J]. 水资源保护, 2005(2): 1-4.
    [18] HUBER M, WELKER A, HELMREICH B. Critical review of heavy metal pollution of traffic area runoff: occurrence, influencing factors, and partitioning[J]. Science of the Total Environment, 2016, 541: 895-919.
    [19] YANO K A, GERONIMO F K, REYES N J, et al. Characterization and comparison of microplastic occurrence in point and non-point pollution sources[J]. Science of The Total Environment, 2021, 797: 148939.
    [20] LEE J H, BANG K W. Characterization of urban stormwater runoff[J]. [no date].
    [21] OSTERLUND H, BLECKEN G, LANGE K, et al. Microplastics in urban catchments: review of sources, pathways, and entry into stormwater[J]. Science of the Total Environment, 2023, 858: 159781.
    [22] BAKR A R, FU G Y, HEDEEN D. Water quality impacts of bridge stormwater runoff from scupper drains on receiving waters: a review[J]. Science of the Total Environment, 2020, 726: 138068.
    [23] 李曼, 曲直, 刘佩勇, 等. 基于人工降雨的北方城市道路径流污染特征研究[J]. 中国给水排水, 2020, 36(21): 110-114.
    [24] 赵玉坤, 梅生成. 太湖流域城市地表径流污染物浓度及污染特征分析[J]. 环境科技, 2019, 32(4): 52-59.
    [25] 谷雨, 张乃明. 昆明主城区城市地表径流污染特征分析[J]. 环境工程学报, 2013, 7(7): 2587-2595.
    [26] 赵磊, 杨逢乐, 王俊松, 等. 合流制排水系统降雨径流污染物的特性及来源[J]. 环境科学学报, 2008(8): 1561-1570.
    [27] 李梅, 于晓晶. 济南市雨水径流水质变化趋势及回用分析[J]. 环境污染与防治, 2008(4): 98-99,102.
    [28] 张光岳, 张红, 杨长军, 等. 成都市道路地表径流污染及对策[J]. 城市环境与城市生态, 2008(4): 4.
    [29] 边博, 朱伟, 黄峰, 等. 镇江城市降雨径流营养盐污染特征研究[J]. 环境科学, 2008(1): 19-25.
    [30] 甘华阳, 卓慕宁, 李定强, 等. 广州城市道路雨水径流的水质特征[J]. 生态环境, 2006(5): 969-973.
    [31] 杨钟凯, 蒋小欣. 苏州古城区降雨径流污染及其防治措施研究[J]. 江苏水利, 2008(7): 43-45.
    [32] 常静, 刘敏, 许世远, 等. 上海城市降雨径流污染时空分布与初始冲刷效应[J]. 地理研究, 2006(6): 994-1002.
    [33] 张淑娜, 李小娟. 天津市区道路地表径流污染特征研究[J]. 环境科学与管理, 2008(2): 25-28.
    [34] BOLLER M, LANGBEIN S, STEINER M. Characterization of road runoff and innovative treatment technologies[C]//Morrison G M, Rauch S, eds. Highway and Urban Environment. Dordrecht: Springer Netherlands, 2007: 441-452.
    [35] 车伍, 刘燕, 李俊奇. 国内外城市雨水水质及污染控制[J]. 给水排水, 2003(10): 38-42.
    [36] CHOE J S, BANG K W, LEE J H. Characterization of surface runoff in urban areas[J]. Water Science and Technology, 2002, 45(9): 249-254.
    [37] GROMAIRE-Mertz M C, GARNAUD S, GONZALEZ A, et al. Characterisation of urban runoff pollution in Paris[J]. Water Science and Technology, 1999, 39(2): 1-8.
    [38] 罗彬, 李纳, 王军霞. 城市面源污染形成过程及其排放特征研究进展[J]. 四川环境, 2012, 31(4): 110-113.
    [39] GROMAIRE M C, GARNAUD S, SAAD M, et al. Contribution of different sources to the pollution of wet weather flows in combined sewers[J]. Water Research, 2001, 35(2): 521-533.
    [40] VAZE J, CHIEW F H S. Experimental study of pollutant accumulation on an urban road surface[J]. Urban Water, 2002, 4(4): 379-389.
    [41] 边博. 前期晴天时间对城市降雨径流污染水质的影响[J]. 环境科学, 2009, 30(12): 3522-3526.
    [42] BERLAND A, SHIFLETT S A, SHUSTER W D, et al. The role of trees in urban stormwater management[J]. Landscape and Urban Planning, 2017, 162: 167-177.
    [43] BERTRAND-KRAJEWSKI J L, BARDIN J P, GIBELLO C. Long term monitoring of sewer sediment accumulation and flushing experiments in a man-entry sewer[J]. Water Science and Technology, 2006, 54(6/7): 109-117.
    [44] GROMAIRE M C, GARNAUD S, SAAD M, et al. Contribution of different sources to the pollution of wet weather flows in combined sewers[J]. Water Research, 2001, 35(2): 521-533.
    [45] AHYERRE M, OMS C, CHEBBO G. The erosion of organic solids in combined sewers[J]. Water Science and Technology, 2001, 43(5): 95-102.
    [46] 徐祖信, 张辰, 李怀正. 我国城市河流黑臭问题分类与系统化治理实践[J]. 给水排水, 2018, 54(10): 1-5

    ,39.
    [47] CHEBBO G, LAPLACE D, BACHOC A, et al. Technical solutions envisaged in managing solids in combined sewer networks[J]. Water Science and Technology, 1996, 33(9): 237-244.
    [48] AHYERRE M, CHEBBO G. Identification of in-sewer sources of organic solids contributing to combined sewer overflows[J]. Environmental Technology, 2002, 23(9): 1063-1073.
    [49] 黄乃先, 齐一凡, 金伟. 排水管道沉积物控制的研究进展[J]. 环境工程技术学报, 2021, 11(3): 507-513.
    [50] 潘伟亮, 何强, 艾海男, 等. 重庆典型区域雨水管道沉积物中氮磷污染特征分析[J]. 环境科学学报, 2015, 35(1): 257-261.
    [51] 李云青, 李海燕, 谭朝洪, 等. 城市雨污合流制排水管道降雨径流污染特征研究[J]. 人民黄河, 2023, 45(7): 109-115.
    [52] 潘国庆, 车伍, 李海燕, 等. 雨水管道沉积物对径流初期冲刷的影响[J]. 环境科学学报, 2009, 29(4): 771-776.
    [53] 王龙, 黄跃飞, 王光谦. 城市非点源污染模型研究进展[J]. 环境科学, 2010, 31(10): 2532-2540.
    [54] OUYANG W, GAO X, WEI P, et al. A review of diffuse pollution modeling and associated implications for watershed management in China[J]. Journal of Soils and Sediments, 2017, 17(6): 1527-1536.
    [55] 张秋玲, 陈英旭, 俞巧钢, 等. 非点源污染模型研究进展[J]. 应用生态学报, 2007(8): 1886-1890.
    [56] 李怀恩, 庄咏涛. 预测非点源营养负荷的输出系数法研究进展与应用[J]. 西安理工大学学报, 2003(4): 307-312.
    [57] WANG M, CHEN L, WU L, et al. Review of nonpoint source pollution models: current status and future direction[J]. Water, 2022, 14(20): 3217.
    [58] 王龙, 黄跃飞, 王光谦. 城市非点源污染模型研究进展[J]. 环境科学, 2010, 31(10): 2532-2540.
    [59] GASSMAN P W, REYES M R, GREEN C H, et al. The soil and water assessment tool: historical development, applications, and future research directions[J]. Transactions of the ASABE, 2007, 50(4): 1211-1250.
    [60] JIANG M, PENG H, LIANG S, et al. Impact of extreme rainfall on non-point source nitrogen loss in coastal basins of Laizhou Bay, China[J]. Science of the Total Environment, 2023, 881: 163427.
    [61] WANG W, CHEN L, SHEN Z. Dynamic export coefficient model for evaluating the effects of environmental changes on non-point source pollution[J]. Science of The Total Environment, 2020, 747: 141164.
    [62] KARTERIS M, THEODORIDOU I, MALLINIS G, et al. Towards a green sustainable strategy for Mediterranean cities: assessing the benefits of large-scale green roofs implementation in Thessaloniki, Northern Greece, using environmental modelling, GIS and very high spatial resolution remote sensing data[J]. Renewable & Sustainable Energy Reviews, 2016, 58: 510-525.
    [63] HOU L, ZHOU Z, WANG R, et al. Research on the non-point source pollution characteristics of important drinking water sources[J]. Water, 2022, 14(2): 211.
    [64] QIAN Y, SUN L, CHEN D, et al. The response of the migration of non-point source pollution to land use change in a typical small watershed in a semi-urbanized area[J]. Science of the Total Environment, 2021, 785: 147387.
    [65] TAN S, XIE D, NI J, et al. Output characteristics and driving factors of non-point source nitrogen (N) and phosphorus (P) in the Three Gorges reservoir area (TGRA) based on migration process: 1995—2020[J]. Science of the Total Environment, 2023, 875: 162543.
    [66] HUANG L, HAN X, WANG X, et al. Coupling with high-resolution remote sensing data to evaluate urban non-point source pollution in Tongzhou, China[J]. Science of The Total Environment, 2022, 831: 154632.
    [67] JOHNES P J. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modelling approach[J]. Journal of Hydrology, 1996, 183(3): 323-349.
    [68] PARK M H, SWAMIKANNU X, STENSTROM M K. Accuracy and precision of the volume-concentration method for urban stormwater modeling[J]. Water Research, 2009, 43(11): 2773-2786.
    [69] XUE J, WANG Q, ZHANG M. A review of non-point source water pollution modeling for the urban-rural transitional areas of China: Research status and prospect[J]. Science of The Total Environment, 2022, 826: 154146.
    [70] 李怀恩. 估算非点源污染负荷的平均浓度法及其应用[J]. 环境科学学报, 2000(4): 397-400.
    [71] 蔡明, 李怀恩, 庄咏涛. 估算流域非点源污染负荷的降雨量差值法[J]. 西北农林科技大学学报(自然科学版), 2005(4): 102-106.
    [72] 洪小康, 李怀恩. 水质水量相关法在非点源污染负荷估算中的应用[J]. 西安理工大学学报, 2000(4): 384-386.
    [73] JANG S, CHO M, YOON J, et al. Using SWMM as a tool for hydrologic impact assessment[J]. Desalination, 2007, 212(1): 344-356.
    [74] LEE S B, YOON C G, JUNG K W, et al. Comparative evaluation of runoff and water quality using HSPF and SWMM[J]. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2010, 62(6): 1401-1409.
    [75] GOBEL P, DIERKES C, COLDEWEY W G. Storm water runoff concentration matrix for urban areas[J]. Journal of Contaminant Hydrology, 2007, 91(1/2): 26-42.
    [76] HUBER M, HELMREICH B. Stormwater management: calculation of traffic area runoff loads and traffic related emissions[J]. Water, 2016, 8(7): 294.
    [77] 黄国如, 王欣, 黄维. 基于InfoWorks ICM模型的城市暴雨内涝模拟[J]. 水电能源科学, 2017, 35(2): 66-70

    ,60.
    [78] 汉京超. 城市雨水径流污染特征及排水系统模拟优化研究[D]. 上海:复旦大学, 2013.
    [79] 寇殿良, 覃芹, 刘非. 基于SWMM和InfoWorks的低影响开发技术研究[J]. 中国农村水利水电, 2018(2): 31-36.
    [80] MEYER L D, WISCHMEIER W H. Mathematical simulation of the process of soil erosion by water[J]. Transactions of the ASAE, 1969, 12(6): 0754-0758.
    [81] 秦语涵, 王红武, 张一龙. 城市雨洪径流模型研究进展[J]. 环境科学与技术, 2016, 39(1): 13-19.
    [82] CHEN Y, XU C Y, CHEN X, et al. Uncertainty in simulation of land-use change impacts on catchment runoff with multi-timescales based on the comparison of the HSPF and SWAT models[J]. Journal of Hydrology, 2019, 573: 486-500.
    [83] AHMED E S M S, MAYS L W. Model for determining real-time optimal dam releases during flooding conditions[J]. Natural Hazards, 2013, 65(3): 1849-1861.
    [84] 李品良, 覃光华, 曹泠然, 等. 基于MIKE URBAN的城市内涝模型应用[J]. 水利水电技术, 2018, 49(12): 11-16.
    [85] 牛媛媛. 基于SWMM和MIKE模型的机场飞行区雨水管网及内涝风险评估[J]. 市政技术, 2022, 40(7): 242-245

    ,251.
    [86] 刘文波. 基于水质目标的雨水径流污染控制研究[D]. 西安理工大学, 2020.
    [87] ZHANG K, CHUI T F M, YANG Y. Simulating the hydrological performance of low impact development in shallow groundwater via a modified SWMM[J]. Journal of Hydrology, 2018, 566: 313-331.
    [88] NIAZI M, NIETCH C, MAGHREBI M, et al. Storm water management model: performance review and gap analysis[J]. Journal of Sustainable Water in the Built Environment, 2017, 3(2): 04017002.
    [89] CHEN X, SHE J, LAI C, et al. Analysis on water quality characteristics of typical black and stinking river in Chengdu City by SWMM[J]. Hydrology, 2019, 6(4): 100.
    [90] SHEN Z Y, CHEN L, LIAO Q, et al. A comprehensive study of the effect of GIS data on hydrology and non-point source pollution modeling[J]. Agricultural Water Management, 2013, 118: 93-102.
    [91] WANG Y, LUAN Q, WANG H, et al. Risk assessment of rainstorm waterlogging in new district based on MIKE Urban[C]//Dong W, Lian Y, Zhang Y, eds. Sustainable Development of Water Resources and Hydraulic Engineering in China. Cham: Springer International Publishing, 2019: 29-40.
    [92] 朱颖蕾, 于永强, 俞芳琴, 等. 基于MIKE21和MIKE Urban耦合的湖区平原城市内涝模拟应用研究[J]. 中国农村水利水电, 2018(10): 6.
    [93] BISHT D S, CHATTERJEE C, KALAKOTI S, et al. Modeling urban floods and drainage using SWMM and MIKE URBAN: a case study[J]. Natural Hazards, 2016, 84(2): 749-776.
    [94] JULIASTUTI, ARUMSARI P, SETYANDITO O. Spatial data and catchment discretization for assessment coastal urban drainage performance using GIS and MIKE URBAN-SWMM[J]. IOP Conference Series: Earth and Environmental Science, 2018, 195: 012018.
    [95] 周飞祥, 贾书惠, 王巍巍. 城市黑臭水体治理的实践与探索:以河南省鹤壁市海绵城市为例[J]. 建设科技, 2016(1): 21-24.
    [96] 王媛媛, 景洪兰. 国外雨洪管理技术实践对北方海绵城市建设启示:以沈阳雨水利用综合规划为例[J]. 中国市政工程, 2016(4): 41-43,102.
    [97] 郭迎新, 徐海东, 谢薇, 等. 海绵城市理念下的老城区CSO污染控制探索与实践[J]. 中国给水排水, 2019, 35(14): 1-6.
    [98] 陶俊. 海绵城市理念在姚江新城道路设计中的实践[J]. 城市道桥与防洪, 2017(7): 87-91,120

    ,12.
    [99] 施萍, 郭羽. 基于"生动、生态、生机"理念的海绵城市规划实践:以上海张家浜楔形绿地规划设计为例[J]. 给水排水, 2017, 53(2): 59-62.
    [100] 李心立. 基于海绵城市理念的城市防洪治涝体系的探讨与实践[J]. 水利规划与设计, 2018(5): 45-48.
    [101] 陈佩青, 楼前. 老旧小区"景观+海绵"微更新的实践探索:杭州上城区南班巷整治项目[J]. 中国园林, 2020, 36(增刊2): 77-80.
    [102] 成玉宁, 谢明坤. 相反相成:基于数字技术的城市道路海绵系统实践:以南京天保街生态路为例[J]. 中国园林, 2017, 33(10): 5-13.
    [103] 顾天奇, 张古陶, 孙海洋, 等. 新建开发区海绵城市实践:以苏州太湖新城市政道路生态雨水渗透及利用工程为例[J]. 中国市政工程, 2016(2): 30-32,113

    -114.
    [104] 叶青, 赵强, 赵静, 等. 中新天津生态城中新友好公园海绵城市规划建设实践[J]. 给水排水, 2023, 59(5): 44-49.
    [105] SMITH J S, WINSTON R J, WITUSZYNSKI D M, et al. Effects of watershed-scale green infrastructure retrofits on urban stormwater quality: a paired watershed study to quantify nutrient and sediment removal[J]. Ecological Engineering, 2023, 186: 106835.
    [106] ARORA M, CHOPRA I, NGUYEN M, et al. Flood mitigation performance of permeable pavements in an urbanised catchment in Melbourne, Australia (Elizabeth Street Catchment): case study[J]. Water, 2023, 15(3): 562.
    [107] SHARMIN R, MARTIN W D, KAYE N B. Hydrologic performance of distributed LID stormwater infrastructure on land developments under a changing climate: site-scale performance improvements[J]. Journal of Irrigation and Drainage Engineering, 2022, 148(7): 05022001.
    [108] MAHMOUD A, ALAM T, SANCHEZ A, et al. Stormwater runoff quality and quantity from permeable and traditional pavements in Semiarid South Texas[J]. Journal of Environmental Engineering, 2020, 146(6): 05020001.
  • 加载中
计量
  • 文章访问数:  404
  • HTML全文浏览量:  76
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-02
  • 网络出版日期:  2024-03-08

目录

    /

    返回文章
    返回