A REVIEW OF CHARACTERISTICS AND CONTROL TECHNOLOGIES OF URBAN NON-POINT SOURCE POLLUTION
-
摘要: 在中国水环境治理过程中,降雨径流产生的面源污染(non-point source pollution)导致严重的河道黑臭等环境污染问题受到广泛关注和研究。面源污染依据下垫面不同主要分为农业面源污染和城市面源污染。基于国内外城市径流污染相研究成果,从城市径流污染特征、污染负荷模型和治理技术与成效3个方面做了总结。中国城市径流中污染物以SS为主,浓度达到200 mg/L以上,且COD、TP和TN均远远超过排放标准。同时,径流中也检出了微塑料和重金属。对比分析了国内应用最为广泛的面源负荷模型,并给出了各自的优缺点及应用场景。收集了近年来的面源污染治理的技术与成效,并总结其局限性。指出未来研究可从GIS耦合、技术组合优化、厂网河调度以及全过程治理开展。Abstract: In the process of water environment management in China, non-point source pollution caused by rainfall runoff has caused serious environmental pollution problems such as black and odorous rivers, which have received extensive attention. Non-point source pollution is mainly divided into agricultural non-point source pollution and urban non-point source pollution, according to different underlying surfaces. Based on the global literature on urban runoff pollution, this paper summarizes the characteristics of urban runoff pollution, pollution load model, and treatment technology and effect. In China, SS is the main pollutant in urban runoff, reaching more than 200 mg/L, and COD, TP, and TN concentrations are also far higher than the emission standards. At the same time, microplastics and heavy metals were also detected in the runoff. The most widely used surface source load models in China are compared and analyzed, and their advantages, disadvantages, and application scenarios are given. The technology and effectiveness of non-point source pollution control in recent years are collected, and its limitations are summarized. Future research should be concentrated on GIS coupling, technology combination optimization, plant network river dispatching, and whole process governance.
-
[1] 赵敏华, 龚屹巍. 上海苏州河治理20年回顾及成效[J]. 中国防汛抗旱, 2018, 28(12): 38-41. [2] XU Z, XU J, YIN H, et al. Urban river pollution control in developing countries[J]. Nature Sustainability, 2019, 2(3): 158-160. [3] Anonymous. News briefs: the national water quality inventory does not accurately portray water quality conditions nationwide[J]. Environmental Science & Technology, 2000, 34(13): 295A. [4] 侯培强, 王效科, 郑飞翔, 等. 我国城市面源污染特征的研究现状[J]. 给水排水, 2009, 45(增刊1): 188-193. [5] OPHER T, FRIEDLER E. Factors affecting highway runoff quality[J]. Urban Water Journal, 2010, 7(3): 155-172. [6] 张枭雄. 我国城市道路面源污染途径及特点[J]. 居舍, 2019(30): 196. [7] SMULLEN J T, SHALLCROSS A L, CAVE K A. Updating the U.S. Nationwide urban runoff quality data base[J]. Water Science and Technology, 1999, 39(12): 9-16. [8] 孙华灿. 城市道路网络发展达标可行性分析及思考:以江苏省为例[J]. 江苏科技信息, 2017(33): 47-49. [9] 丁程程, 刘健. 中国城市面源污染现状及其影响因素[J]. 中国人口·资源与环境, 2011, 21(增刊1): 86-89. [10] 葛铭坤. 我国面源污染治理理论和措施研究综述[J]. 水利规划与设计, 2020(3): 24-28. [11] 余麟, 韩龙, 周连宁, 等. 深圳市城市道路地表污染物分析研究[J]. 环境科学与管理, 2016, 41(2): 101-104,120. [12] 李敦柱, 刘安, 李思远, 等. 道路径流差异性对面源污染控制的影响[J]. 环境科学与技术, 2016, 39(1): 101-107. [13] 刘晓丹, 詹翾, 文贤儿. 初期雨水污染常态化管控对策研究[J]. 环境保护, 2022, 50(19): 61-64. [14] 万帆, 甄伟, 吴海涛, 等. 城市地表径流面源污染分析研究:以武汉市典型下垫面为例[J]. 工业安全与环保, 2022, 48(1): 70-74,98. [15] 倪艳芳. 城市面源污染的特征及其控制的研究进展[J]. 环境科学与管理, 2008(2): 53-57. [16] ARYAL R, VIGNESWARAN S, KANDASAMY J, et al. Urban stormwater quality and treatment[J]. Korean Journal of Chemical Engineering, 2010, 27(5): 1343-1359. [17] 韩冰, 王效科, 欧阳志云. 城市面源污染特征的分析[J]. 水资源保护, 2005(2): 1-4. [18] HUBER M, WELKER A, HELMREICH B. Critical review of heavy metal pollution of traffic area runoff: occurrence, influencing factors, and partitioning[J]. Science of the Total Environment, 2016, 541: 895-919. [19] YANO K A, GERONIMO F K, REYES N J, et al. Characterization and comparison of microplastic occurrence in point and non-point pollution sources[J]. Science of The Total Environment, 2021, 797: 148939. [20] LEE J H, BANG K W. Characterization of urban stormwater runoff[J]. [no date]. [21] OSTERLUND H, BLECKEN G, LANGE K, et al. Microplastics in urban catchments: review of sources, pathways, and entry into stormwater[J]. Science of the Total Environment, 2023, 858: 159781. [22] BAKR A R, FU G Y, HEDEEN D. Water quality impacts of bridge stormwater runoff from scupper drains on receiving waters: a review[J]. Science of the Total Environment, 2020, 726: 138068. [23] 李曼, 曲直, 刘佩勇, 等. 基于人工降雨的北方城市道路径流污染特征研究[J]. 中国给水排水, 2020, 36(21): 110-114. [24] 赵玉坤, 梅生成. 太湖流域城市地表径流污染物浓度及污染特征分析[J]. 环境科技, 2019, 32(4): 52-59. [25] 谷雨, 张乃明. 昆明主城区城市地表径流污染特征分析[J]. 环境工程学报, 2013, 7(7): 2587-2595. [26] 赵磊, 杨逢乐, 王俊松, 等. 合流制排水系统降雨径流污染物的特性及来源[J]. 环境科学学报, 2008(8): 1561-1570. [27] 李梅, 于晓晶. 济南市雨水径流水质变化趋势及回用分析[J]. 环境污染与防治, 2008(4): 98-99,102. [28] 张光岳, 张红, 杨长军, 等. 成都市道路地表径流污染及对策[J]. 城市环境与城市生态, 2008(4): 4. [29] 边博, 朱伟, 黄峰, 等. 镇江城市降雨径流营养盐污染特征研究[J]. 环境科学, 2008(1): 19-25. [30] 甘华阳, 卓慕宁, 李定强, 等. 广州城市道路雨水径流的水质特征[J]. 生态环境, 2006(5): 969-973. [31] 杨钟凯, 蒋小欣. 苏州古城区降雨径流污染及其防治措施研究[J]. 江苏水利, 2008(7): 43-45. [32] 常静, 刘敏, 许世远, 等. 上海城市降雨径流污染时空分布与初始冲刷效应[J]. 地理研究, 2006(6): 994-1002. [33] 张淑娜, 李小娟. 天津市区道路地表径流污染特征研究[J]. 环境科学与管理, 2008(2): 25-28. [34] BOLLER M, LANGBEIN S, STEINER M. Characterization of road runoff and innovative treatment technologies[C]//Morrison G M, Rauch S, eds. Highway and Urban Environment. Dordrecht: Springer Netherlands, 2007: 441-452. [35] 车伍, 刘燕, 李俊奇. 国内外城市雨水水质及污染控制[J]. 给水排水, 2003(10): 38-42. [36] CHOE J S, BANG K W, LEE J H. Characterization of surface runoff in urban areas[J]. Water Science and Technology, 2002, 45(9): 249-254. [37] GROMAIRE-Mertz M C, GARNAUD S, GONZALEZ A, et al. Characterisation of urban runoff pollution in Paris[J]. Water Science and Technology, 1999, 39(2): 1-8. [38] 罗彬, 李纳, 王军霞. 城市面源污染形成过程及其排放特征研究进展[J]. 四川环境, 2012, 31(4): 110-113. [39] GROMAIRE M C, GARNAUD S, SAAD M, et al. Contribution of different sources to the pollution of wet weather flows in combined sewers[J]. Water Research, 2001, 35(2): 521-533. [40] VAZE J, CHIEW F H S. Experimental study of pollutant accumulation on an urban road surface[J]. Urban Water, 2002, 4(4): 379-389. [41] 边博. 前期晴天时间对城市降雨径流污染水质的影响[J]. 环境科学, 2009, 30(12): 3522-3526. [42] BERLAND A, SHIFLETT S A, SHUSTER W D, et al. The role of trees in urban stormwater management[J]. Landscape and Urban Planning, 2017, 162: 167-177. [43] BERTRAND-KRAJEWSKI J L, BARDIN J P, GIBELLO C. Long term monitoring of sewer sediment accumulation and flushing experiments in a man-entry sewer[J]. Water Science and Technology, 2006, 54(6/7): 109-117. [44] GROMAIRE M C, GARNAUD S, SAAD M, et al. Contribution of different sources to the pollution of wet weather flows in combined sewers[J]. Water Research, 2001, 35(2): 521-533. [45] AHYERRE M, OMS C, CHEBBO G. The erosion of organic solids in combined sewers[J]. Water Science and Technology, 2001, 43(5): 95-102. [46] 徐祖信, 张辰, 李怀正. 我国城市河流黑臭问题分类与系统化治理实践[J]. 给水排水, 2018, 54(10): 1-5,39. [47] CHEBBO G, LAPLACE D, BACHOC A, et al. Technical solutions envisaged in managing solids in combined sewer networks[J]. Water Science and Technology, 1996, 33(9): 237-244. [48] AHYERRE M, CHEBBO G. Identification of in-sewer sources of organic solids contributing to combined sewer overflows[J]. Environmental Technology, 2002, 23(9): 1063-1073. [49] 黄乃先, 齐一凡, 金伟. 排水管道沉积物控制的研究进展[J]. 环境工程技术学报, 2021, 11(3): 507-513. [50] 潘伟亮, 何强, 艾海男, 等. 重庆典型区域雨水管道沉积物中氮磷污染特征分析[J]. 环境科学学报, 2015, 35(1): 257-261. [51] 李云青, 李海燕, 谭朝洪, 等. 城市雨污合流制排水管道降雨径流污染特征研究[J]. 人民黄河, 2023, 45(7): 109-115. [52] 潘国庆, 车伍, 李海燕, 等. 雨水管道沉积物对径流初期冲刷的影响[J]. 环境科学学报, 2009, 29(4): 771-776. [53] 王龙, 黄跃飞, 王光谦. 城市非点源污染模型研究进展[J]. 环境科学, 2010, 31(10): 2532-2540. [54] OUYANG W, GAO X, WEI P, et al. A review of diffuse pollution modeling and associated implications for watershed management in China[J]. Journal of Soils and Sediments, 2017, 17(6): 1527-1536. [55] 张秋玲, 陈英旭, 俞巧钢, 等. 非点源污染模型研究进展[J]. 应用生态学报, 2007(8): 1886-1890. [56] 李怀恩, 庄咏涛. 预测非点源营养负荷的输出系数法研究进展与应用[J]. 西安理工大学学报, 2003(4): 307-312. [57] WANG M, CHEN L, WU L, et al. Review of nonpoint source pollution models: current status and future direction[J]. Water, 2022, 14(20): 3217. [58] 王龙, 黄跃飞, 王光谦. 城市非点源污染模型研究进展[J]. 环境科学, 2010, 31(10): 2532-2540. [59] GASSMAN P W, REYES M R, GREEN C H, et al. The soil and water assessment tool: historical development, applications, and future research directions[J]. Transactions of the ASABE, 2007, 50(4): 1211-1250. [60] JIANG M, PENG H, LIANG S, et al. Impact of extreme rainfall on non-point source nitrogen loss in coastal basins of Laizhou Bay, China[J]. Science of the Total Environment, 2023, 881: 163427. [61] WANG W, CHEN L, SHEN Z. Dynamic export coefficient model for evaluating the effects of environmental changes on non-point source pollution[J]. Science of The Total Environment, 2020, 747: 141164. [62] KARTERIS M, THEODORIDOU I, MALLINIS G, et al. Towards a green sustainable strategy for Mediterranean cities: assessing the benefits of large-scale green roofs implementation in Thessaloniki, Northern Greece, using environmental modelling, GIS and very high spatial resolution remote sensing data[J]. Renewable & Sustainable Energy Reviews, 2016, 58: 510-525. [63] HOU L, ZHOU Z, WANG R, et al. Research on the non-point source pollution characteristics of important drinking water sources[J]. Water, 2022, 14(2): 211. [64] QIAN Y, SUN L, CHEN D, et al. The response of the migration of non-point source pollution to land use change in a typical small watershed in a semi-urbanized area[J]. Science of the Total Environment, 2021, 785: 147387. [65] TAN S, XIE D, NI J, et al. Output characteristics and driving factors of non-point source nitrogen (N) and phosphorus (P) in the Three Gorges reservoir area (TGRA) based on migration process: 1995—2020[J]. Science of the Total Environment, 2023, 875: 162543. [66] HUANG L, HAN X, WANG X, et al. Coupling with high-resolution remote sensing data to evaluate urban non-point source pollution in Tongzhou, China[J]. Science of The Total Environment, 2022, 831: 154632. [67] JOHNES P J. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modelling approach[J]. Journal of Hydrology, 1996, 183(3): 323-349. [68] PARK M H, SWAMIKANNU X, STENSTROM M K. Accuracy and precision of the volume-concentration method for urban stormwater modeling[J]. Water Research, 2009, 43(11): 2773-2786. [69] XUE J, WANG Q, ZHANG M. A review of non-point source water pollution modeling for the urban-rural transitional areas of China: Research status and prospect[J]. Science of The Total Environment, 2022, 826: 154146. [70] 李怀恩. 估算非点源污染负荷的平均浓度法及其应用[J]. 环境科学学报, 2000(4): 397-400. [71] 蔡明, 李怀恩, 庄咏涛. 估算流域非点源污染负荷的降雨量差值法[J]. 西北农林科技大学学报(自然科学版), 2005(4): 102-106. [72] 洪小康, 李怀恩. 水质水量相关法在非点源污染负荷估算中的应用[J]. 西安理工大学学报, 2000(4): 384-386. [73] JANG S, CHO M, YOON J, et al. Using SWMM as a tool for hydrologic impact assessment[J]. Desalination, 2007, 212(1): 344-356. [74] LEE S B, YOON C G, JUNG K W, et al. Comparative evaluation of runoff and water quality using HSPF and SWMM[J]. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2010, 62(6): 1401-1409. [75] GOBEL P, DIERKES C, COLDEWEY W G. Storm water runoff concentration matrix for urban areas[J]. Journal of Contaminant Hydrology, 2007, 91(1/2): 26-42. [76] HUBER M, HELMREICH B. Stormwater management: calculation of traffic area runoff loads and traffic related emissions[J]. Water, 2016, 8(7): 294. [77] 黄国如, 王欣, 黄维. 基于InfoWorks ICM模型的城市暴雨内涝模拟[J]. 水电能源科学, 2017, 35(2): 66-70,60. [78] 汉京超. 城市雨水径流污染特征及排水系统模拟优化研究[D]. 上海:复旦大学, 2013. [79] 寇殿良, 覃芹, 刘非. 基于SWMM和InfoWorks的低影响开发技术研究[J]. 中国农村水利水电, 2018(2): 31-36. [80] MEYER L D, WISCHMEIER W H. Mathematical simulation of the process of soil erosion by water[J]. Transactions of the ASAE, 1969, 12(6): 0754-0758. [81] 秦语涵, 王红武, 张一龙. 城市雨洪径流模型研究进展[J]. 环境科学与技术, 2016, 39(1): 13-19. [82] CHEN Y, XU C Y, CHEN X, et al. Uncertainty in simulation of land-use change impacts on catchment runoff with multi-timescales based on the comparison of the HSPF and SWAT models[J]. Journal of Hydrology, 2019, 573: 486-500. [83] AHMED E S M S, MAYS L W. Model for determining real-time optimal dam releases during flooding conditions[J]. Natural Hazards, 2013, 65(3): 1849-1861. [84] 李品良, 覃光华, 曹泠然, 等. 基于MIKE URBAN的城市内涝模型应用[J]. 水利水电技术, 2018, 49(12): 11-16. [85] 牛媛媛. 基于SWMM和MIKE模型的机场飞行区雨水管网及内涝风险评估[J]. 市政技术, 2022, 40(7): 242-245,251. [86] 刘文波. 基于水质目标的雨水径流污染控制研究[D]. 西安理工大学, 2020. [87] ZHANG K, CHUI T F M, YANG Y. Simulating the hydrological performance of low impact development in shallow groundwater via a modified SWMM[J]. Journal of Hydrology, 2018, 566: 313-331. [88] NIAZI M, NIETCH C, MAGHREBI M, et al. Storm water management model: performance review and gap analysis[J]. Journal of Sustainable Water in the Built Environment, 2017, 3(2): 04017002. [89] CHEN X, SHE J, LAI C, et al. Analysis on water quality characteristics of typical black and stinking river in Chengdu City by SWMM[J]. Hydrology, 2019, 6(4): 100. [90] SHEN Z Y, CHEN L, LIAO Q, et al. A comprehensive study of the effect of GIS data on hydrology and non-point source pollution modeling[J]. Agricultural Water Management, 2013, 118: 93-102. [91] WANG Y, LUAN Q, WANG H, et al. Risk assessment of rainstorm waterlogging in new district based on MIKE Urban[C]//Dong W, Lian Y, Zhang Y, eds. Sustainable Development of Water Resources and Hydraulic Engineering in China. Cham: Springer International Publishing, 2019: 29-40. [92] 朱颖蕾, 于永强, 俞芳琴, 等. 基于MIKE21和MIKE Urban耦合的湖区平原城市内涝模拟应用研究[J]. 中国农村水利水电, 2018(10): 6. [93] BISHT D S, CHATTERJEE C, KALAKOTI S, et al. Modeling urban floods and drainage using SWMM and MIKE URBAN: a case study[J]. Natural Hazards, 2016, 84(2): 749-776. [94] JULIASTUTI, ARUMSARI P, SETYANDITO O. Spatial data and catchment discretization for assessment coastal urban drainage performance using GIS and MIKE URBAN-SWMM[J]. IOP Conference Series: Earth and Environmental Science, 2018, 195: 012018. [95] 周飞祥, 贾书惠, 王巍巍. 城市黑臭水体治理的实践与探索:以河南省鹤壁市海绵城市为例[J]. 建设科技, 2016(1): 21-24. [96] 王媛媛, 景洪兰. 国外雨洪管理技术实践对北方海绵城市建设启示:以沈阳雨水利用综合规划为例[J]. 中国市政工程, 2016(4): 41-43,102. [97] 郭迎新, 徐海东, 谢薇, 等. 海绵城市理念下的老城区CSO污染控制探索与实践[J]. 中国给水排水, 2019, 35(14): 1-6. [98] 陶俊. 海绵城市理念在姚江新城道路设计中的实践[J]. 城市道桥与防洪, 2017(7): 87-91,120,12. [99] 施萍, 郭羽. 基于"生动、生态、生机"理念的海绵城市规划实践:以上海张家浜楔形绿地规划设计为例[J]. 给水排水, 2017, 53(2): 59-62. [100] 李心立. 基于海绵城市理念的城市防洪治涝体系的探讨与实践[J]. 水利规划与设计, 2018(5): 45-48. [101] 陈佩青, 楼前. 老旧小区"景观+海绵"微更新的实践探索:杭州上城区南班巷整治项目[J]. 中国园林, 2020, 36(增刊2): 77-80. [102] 成玉宁, 谢明坤. 相反相成:基于数字技术的城市道路海绵系统实践:以南京天保街生态路为例[J]. 中国园林, 2017, 33(10): 5-13. [103] 顾天奇, 张古陶, 孙海洋, 等. 新建开发区海绵城市实践:以苏州太湖新城市政道路生态雨水渗透及利用工程为例[J]. 中国市政工程, 2016(2): 30-32,113-114. [104] 叶青, 赵强, 赵静, 等. 中新天津生态城中新友好公园海绵城市规划建设实践[J]. 给水排水, 2023, 59(5): 44-49. [105] SMITH J S, WINSTON R J, WITUSZYNSKI D M, et al. Effects of watershed-scale green infrastructure retrofits on urban stormwater quality: a paired watershed study to quantify nutrient and sediment removal[J]. Ecological Engineering, 2023, 186: 106835. [106] ARORA M, CHOPRA I, NGUYEN M, et al. Flood mitigation performance of permeable pavements in an urbanised catchment in Melbourne, Australia (Elizabeth Street Catchment): case study[J]. Water, 2023, 15(3): 562. [107] SHARMIN R, MARTIN W D, KAYE N B. Hydrologic performance of distributed LID stormwater infrastructure on land developments under a changing climate: site-scale performance improvements[J]. Journal of Irrigation and Drainage Engineering, 2022, 148(7): 05022001. [108] MAHMOUD A, ALAM T, SANCHEZ A, et al. Stormwater runoff quality and quantity from permeable and traditional pavements in Semiarid South Texas[J]. Journal of Environmental Engineering, 2020, 146(6): 05020001.
点击查看大图
计量
- 文章访问数: 404
- HTML全文浏览量: 76
- PDF下载量: 29
- 被引次数: 0