RESILIENCE EVALUATION OF URBAN RAINWATER DRAINAGE SYSTEM IN PLAIN RIVER NETWORK AREA
-
摘要: 随着城市化高速发展,城市排水和内涝的压力日益增大,增强雨水排水系统的"弹性"是城市发展的方向。选择长江三角洲某平原河网城市的某片区为研究对象,基于率定的SWMM模型和已有的研究,从系统内涝积水量和持续时间2个方面的弹性出发,建立雨水排水系统弹性模型。在不同降雨情境下运行模型,分析研究区域的雨水排水系统弹性。结果表明,随着降雨强度增加,系统弹性逐渐减小;系统弹性值和降雨强度之间呈线性负相关。在低重现期条件下,随着降雨强度的增大,弹性值下降幅度较小。重现期越大,系统弹性值下降速率越快。在同一降雨重现期下,随着不透水地面比例的增加,系统弹性逐渐减小。在高重现期和高不透水地面比例情况下,系统弹性值较低;在10年一遇降雨条件下,区域不透水地面比例增加,系统弹性值下降速度最快。将弹性理念引入城市雨水排水系统中,建立反映系统在应对外界环境变化和灾害时的弹性能力评价体系,有助于全面了解雨水排水系统性能,对于雨水排水系统的优化改造以及城市风险管理具有重要意义。Abstract: With the rapid development of urbanization, the pressure of urban drainage and the occurrence of waterlogging is increasing, and enhancing the "resilience" of rainwater drainage systems is an urgent need of urban development. This study selected a certain area of a plain river network city in the Yangtze River Delta as the research object. Based on the calibrated SWMM model and the existing research result, a resilience evaluation model of the rainwater drainage system was established from two aspects: the amount of waterlogging, and the duration of the system. We ran the model under different rainfall scenarios to analyze the resilience of the rainwater drainage system in the study area. The results show that as the rainfall intensity increases, the system resilience gradually decreases,which means that there is a negatiue linear correlation between the system resilience value and the increase in rainfall intensity. Under the conditions of low recurrence period, the decrease in resilient value is relatively smaller with the increase of rainfall intensity. The larger the recurrence period, the faster the decrease rate of system resilient value. Under the same rainfall recurrence period, as the proportion of impermeable ground increases, the system resilience gradually decreases. In the case of high recurrence period and high proportion of impermeable ground, the system resilient value is relatively lower; under the condition of rainfall with a return period of 10 years, the proportion of impermeable ground in the region increases, and the system's resilient value decreases the fastest. Introducing the concept of resilience into urban rainwater drainage systems and establishing an evaluation system that reflects the resilience of the system in response to external environmental changes and disasters can help comprehensively understand the performance of rainwater drainage systems. It is of great significance for the transformation and optimization of rainwater drainage systems and helpful for urban risk management.
-
[1] ZHOU X, BAI Z, YANG Y. Linking trends in urban extreme rainfall to urban flooding in China[J]. International Journal of Climatology, 2017, 37(13): 4586-4593. [2] GUPTHA G C, SWAIN S, Al-ANSARI N, et al. Evaluation of an urban drainage system and its resilience using remote sensing and GIS[J]. Remote Sensing Applications-Society and Environment, 2021, 23: 100601. [3] 郑涛, 孙斌栋, 王艺晓. 区域一体化视角下的弹性城市评价:以长江三角洲地区为例[J]. 地理科学, 2022, 42(5):863-873. [4] CASAL C A, SADR S, FU G, et al. Reliable, resilient and sustainable urban drainage systems: an analysis of robustness under deep uncertainty[J]. Environmental Science & Technology, 2018, 52(16): 9008-9021. [5] ZHANG L, CHEN X, QIAN H. Diagnosis of resilience to flood hazard in lower reaches of the Beijiang River[J]. Journal of Hydraulic Engineering, 2011(9):1129-1134. [6] 许涛, 王春连, 洪敏. 基于灰箱模型的中国城市内涝弹性评价[J]. 城市问题, 2015(4):2-11. [7] YANG W, ZHANG J. Assessing the performance of gray and green strategies for sustainable urban drainage system development: a multi-criteria decision-making analysis[J]. Journal of Cleaner Production, 2021, 293: 126191. [8] FRANCIS R, BEKERA B. A metric and framework for resilience analysis of engineered and infrastructure systems[J]. Reliability Engineering and Analysis of Engineered and Infrastructure Systems, 2014, 121:90-103. [9] GUPTHA G C, SWAIN S, Al-Ansari N, et al. Assessing the role of SuDS in resilience enhancement of urban drainage system: a case study of Gurugram City, India[J]. Urban Climate, 2022, 41: 101075. [10] LIU D, CHEN X, TEDDY N. Resilience assessment of water resources system[J]. Water Resources Management, 2012, 26(13): 3743-3755. [11] 柯庆, 王林森, 陶涛. 城市雨水排水系统恢复力评估[J]. 中国给水排水, 2016, 32(21): 6-11. [12] DONG X, ZENG S. Enhancing future resilience in urban drainage system: green versus grey infrastructure[J]. Water Research. 2017, 124: 280-289. [13] 王琳,陈天. 滨海地区城市水安全弹性分析:以中国112个城市为例[J]. 城市问题,2017(9):39-47. [14] 李树平. 雨水管理模型SWMMH(5.0版)用户手册[A]. 上海: 同济大学环境科学与工程学院, 2011. [15] 康得军, 邱福杰, 温儒杰, 等. 基于SWMM的LID参数局部与全局敏感性分析[J]. 中国给水排水,2023, 39(17):131-138. [16] 刘兴坡. 基于径流系数的城市降雨径流模型参数校准方法[J]. 给水排水, 2009, 45(11):213-217. [17] 刘兴坡, 刘遂庆, 李树平,等. 镇江市主城区排水管网计算机建模方法[J]. 中国给水排水, 2007(11):42-46. [18] YIN J, YAN D, YANG Z, et al. Projection of extreme precipitation in the context of climate change in Huang-Huai-Hai region, China[J]. Journal of Earth System Science, 2016, 125(5): 417-429.
点击查看大图
计量
- 文章访问数: 109
- HTML全文浏览量: 23
- PDF下载量: 5
- 被引次数: 0