中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机碳源种类及位置对黄铁矿生物滞留设施淹没区水质的影响研究

柴宏祥 王欣玥 马海元 刘福建 徐艳红 马菁晨 翁仲帅 邵知宇

柴宏祥, 王欣玥, 马海元, 刘福建, 徐艳红, 马菁晨, 翁仲帅, 邵知宇. 有机碳源种类及位置对黄铁矿生物滞留设施淹没区水质的影响研究[J]. 环境工程, 2023, 41(12): 82-88. doi: 10.13205/j.hjgc.202312010
引用本文: 柴宏祥, 王欣玥, 马海元, 刘福建, 徐艳红, 马菁晨, 翁仲帅, 邵知宇. 有机碳源种类及位置对黄铁矿生物滞留设施淹没区水质的影响研究[J]. 环境工程, 2023, 41(12): 82-88. doi: 10.13205/j.hjgc.202312010
CHAI Hongxiang, WANG Xinyue, MA Haiyuan, LIU Fujian, XU Yanhong, MA Jingchen, WENG Zhongshuai, SHAO Zhiyu. INFLUENCE OF TYPE AND DOSING LOCATION OF CARBON SOURCE ON WATER QUALITY OF SUBMERGED ZONE IN PYRITE-BASED BIORETENTION SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 82-88. doi: 10.13205/j.hjgc.202312010
Citation: CHAI Hongxiang, WANG Xinyue, MA Haiyuan, LIU Fujian, XU Yanhong, MA Jingchen, WENG Zhongshuai, SHAO Zhiyu. INFLUENCE OF TYPE AND DOSING LOCATION OF CARBON SOURCE ON WATER QUALITY OF SUBMERGED ZONE IN PYRITE-BASED BIORETENTION SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 82-88. doi: 10.13205/j.hjgc.202312010

有机碳源种类及位置对黄铁矿生物滞留设施淹没区水质的影响研究

doi: 10.13205/j.hjgc.202312010
基金项目: 

国家自然科学基金(52070026)

详细信息
    作者简介:

    柴宏祥(1980-),男,教授,主要研究方向为海绵城市与城市管网建设、水环境保护与治理。chaihx@cqu.edu.cn

    通讯作者:

    柴宏祥(1980-),男,教授,主要研究方向为海绵城市与城市管网建设、水环境保护与治理。chaihx@cqu.edu.cn

INFLUENCE OF TYPE AND DOSING LOCATION OF CARBON SOURCE ON WATER QUALITY OF SUBMERGED ZONE IN PYRITE-BASED BIORETENTION SYSTEMS

  • 摘要: 在生物滞留设施内构建淹没区并添加碳源是目前广泛采用的雨水强化脱氮方式,这使得淹没区成为反硝化作用发生的主要场所,并显著影响生物滞留设施脱氮效能。但是目前尚无研究清晰揭示生物滞留设施中碳源的种类和位置对淹没区水质的影响。基于提升黄铁矿同步脱氮除磷的能力,在黄铁矿基质生物滞留设施中通过改变碳源的种类(玉米芯、稻壳、树皮)和添加位置探究了其对淹没区水质的影响。结果显示,3种碳源对强化NO3--N的去除的能力顺序为树皮>稻壳>玉米芯,且树皮不会造成NH4+-N去除效率的下降。对淹没区水质的进一步研究发现,添加树皮后淹没区NH4+-N、PO43--P浓度更低,且NO3--N去除速率更快。碳源添加在覆盖层促进了NH4+-N和PO43--P去除,但NO3--N去除率略微下降。碳源添加在覆盖层可以维持淹没区中更低且稳定的NH4+-N浓度,并提供适宜的COD使NO3--N浓度不断下降。当碳源添加在包气带和覆盖层时反硝化主要发生在干旱期间,而碳源添加在淹没区时反硝化作用主要发生在降雨期间。
  • [1] KONG Z, SHAO Z, SHEN Y, et al. Comprehensive evaluation of stormwater pollutants characteristics, purification process and environmental impact after low impact development practices[J]. Journal of Cleaner Production, 2021, 278.
    [2] LI L, DAVIS A P. Urban stormwater runoff nitrogen composition and fate in bioretention systems[J]. Environ Sci Technol, 2014, 48(6): 3403-3410.
    [3] KONG Z, SONG Y, SHAO Z, et al. Biochar-pyrite bi-layer bioretention system for dissolved nutrient treatment and by-product generation control under various stormwater conditions[J]. Water Res, 2021, 206: 117737.
    [4] TIAN J, JIN J, CHIU P C, et al. A pilot-scale, bi-layer bioretention system with biochar and zero-valent iron for enhanced nitrate removal from stormwater[J]. Water Res, 2019, 148: 378-387.
    [5] DONAGHUE A G, MORGAN N, TORAN L, et al. The impact of bioretention column internal water storage underdrain height on denitrification under continuous and transient flow[J]. Water Res, 2022, 214: 118205.
    [6] 仇付国, 代一帆, 付昆明, 等. 生物滞留系统设置内部淹没区对径流污染物去除的影响[J]. 环境工程, 2017, 35(7): 7-12.
    [7] CHEN Y, SHAO Z, KONG Z, et al. Study of pyrite based autotrophic denitrification system for low-carbon source stormwater treatment[J]. Journal of Water Process Engineering, 2020, 37.
    [8] 李立青, 胡楠, 刘雨情, 等. 3种生物滞留设计对城市地表径流溶解性氮的去除作用[J]. 环境科学, 2017, 38(5): 1881-1888.
    [9] YOU Z, ZHANG L, PAN S Y, et al. Performance evaluation of modified bioretention systems with alkaline solid wastes for enhanced nutrient removal from stormwater runoff[J]. Water Res, 2019, 161: 61-73.
    [10] LI R, FENG C, HU W, et al. Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation[J]. Water Res, 2016, 89: 171-179.
    [11] 孟依柯, 王媛, 汪传跃, 等. 降雨径流中玉米芯营养素淋出及吸附特性[J]. 水资源保护, 2022, 38(6): 138-145.
    [12] BELLER H R. Anaerobic, nitrate-dependent oxidation of U(IV) oxide minerals by the chemolithoautotrophic bacterium Thiobacillus denitrificans[J]. Appl Environ Microbiol, 2005, 71(4): 2170-2174.
    [13] SUN X, YE Y, MA Q, et al. Variation in enzyme activities involved in carbon and nitrogen cycling in rhizosphere and bulk soil after organic mulching[J]. Rhizosphere, 2021, 19.
    [14] CHAI H, MA J, MA H, et al. Enhanced nutrient removal of agricultural waste-pyrite bioretention system for stormwater pollution treatment[J]. Journal of Cleaner Production, 2023, 395.
    [15] 柴宏祥, 陈一凡, 邵知宇, 等. 硫铁矿基质生物滞留系统对雨水径流的处理效能[J]. 中国给水排水, 2022, 38(3): 112-117.
    [16] YANG X L, JIANG Q, SONG H L, et al. Selection and application of agricultural wastes as solid carbon sources and biofilm carriers in MBR[J]. Journal of Hazardous Materials, 2015, 283: 186-192.
    [17] LI J, DAVIS A P. A unified look at phosphorus treatment using bioretention[J]. Water Research, 2016, 90: 141-155.
    [18] WENG Z, MA H, MA J, et al. Corncob-pyrite bioretention system for enhanced dissolved nutrient treatment: carbon source release and mixotrophic denitrification[J]. Chemosphere, 2022, 306: 135534.
    [19] KONG Z, MA H, SONG Y, et al. A long term study elucidates the relationship between media amendment and pollutant treatment in the stormwater bioretention system: stability or efficiency?[J]. Water Research, 2022, 225.
    [20] DENG Q, WAN L, LI X, et al. Metagenomic evidence reveals denitrifying community diversity rather than abundance drives nitrate removal in stormwater biofilters amended with different organic and inorganic electron donors[J]. Chemosphere, 2020, 257: 127269.
    [21] LI Y, GUO J, LI H, et al. Effect of dissolved oxygen on simultaneous removal of ammonia, nitrate and phosphorus via biological aerated filter with sulfur and pyrite as composite fillers[J]. Bioresour Technol, 2020, 296: 122340.
    [22] MORSE N, PAYNE E, HENRY R, et al. Plant-microbe interactions drive denitrification rates, dissolved nitrogen removal, and the abundance of denitrification genes in stormwater control measures[J]. Environ Sci Technol, 2018, 52(16): 9320-9329.
    [23] LIU L, WANG F, XU S, et al. Woodchips bioretention column for stormwater treatment: nitrogen removal performance, carbon source and microbial community analysis[J]. Chemosphere, 2021, 285: 131519.
  • 加载中
计量
  • 文章访问数:  55
  • HTML全文浏览量:  9
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-26
  • 网络出版日期:  2024-03-08

目录

    /

    返回文章
    返回