中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同温度An/A/O-SBR反硝化除磷及N2O释放特性

任丽芳 李晓庆 孙洪伟

任丽芳, 李晓庆, 孙洪伟. 不同温度An/A/O-SBR反硝化除磷及N2O释放特性[J]. 环境工程, 2023, 41(12): 107-115. doi: 10.13205/j.hjgc.202312013
引用本文: 任丽芳, 李晓庆, 孙洪伟. 不同温度An/A/O-SBR反硝化除磷及N2O释放特性[J]. 环境工程, 2023, 41(12): 107-115. doi: 10.13205/j.hjgc.202312013
REN Lifang, LI Xiaoqing, SUN Hongwei. CHARACTERISTICS OF DENITRIFICATION PHOSPHORUS REMOVAL AND N2O EMISSION IN AN/A/O-SBR UNDER DIFFERENT TEMPERATURES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 107-115. doi: 10.13205/j.hjgc.202312013
Citation: REN Lifang, LI Xiaoqing, SUN Hongwei. CHARACTERISTICS OF DENITRIFICATION PHOSPHORUS REMOVAL AND N2O EMISSION IN AN/A/O-SBR UNDER DIFFERENT TEMPERATURES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 107-115. doi: 10.13205/j.hjgc.202312013

不同温度An/A/O-SBR反硝化除磷及N2O释放特性

doi: 10.13205/j.hjgc.202312013
基金项目: 

烟职博士基金(2018002)

国家自然科学基金项目(51668031)

详细信息
    作者简介:

    任丽芳(1977-),女,硕士,副教授,主要研究方向为生活污水新型生物脱氮除磷技术应用。260943813@qq.com

CHARACTERISTICS OF DENITRIFICATION PHOSPHORUS REMOVAL AND N2O EMISSION IN AN/A/O-SBR UNDER DIFFERENT TEMPERATURES

  • 摘要: 在不同温度(T=32,27,22,17,12 ℃)下驯化厌氧-缺氧-好氧序批式生物反应器(An/A/O-SBR),考察各温度条件下系统同步脱氮除磷性能及N2O释放量,基于聚磷菌(PAOs)、聚糖菌(GAOs)降解特征和内源物质变化分析,确定了不同温度条件下系统PAOs和GAOs间竞争和N2O释放特性。结果表明:随温度降低,An/A/O-SBR反硝化除磷性能呈先提升后降低的趋势。T=22 ℃,缺氧阶段NO-x和TP去除率最高,分别达95.5%和90.3%,N2O产率为3.71%。低温促进了PAOs竞争优势,温度由32 ℃降至12 ℃,厌氧阶段合成的PHA中PHB占比(ΔPHB/ΔPHA)、缺氧阶段消耗PHA(PHAcon)中PHB(HBcon)占比(PHBcon/PHAcon)、缺氧阶段合成糖原(Glyin)占PHA消耗比例(Glyin/PHAcon)均逐渐接近于PAOs降解特性。温度升高促进了GAOs增殖,其反硝化过程不进行磷过量吸收,缺氧阶段TP去除率降低;低温条件下酶促反应速率下降,PHA提供电子速率降低,导致缺氧阶段NO3-去除率下降和N2O产率增加。
  • [1] CAMEJO P Y, OWEN B R, MARTIRANO J, et al. Candidatus accumulibacter phosphatis clades enriched under cyclic anaerobic and microaerobic conditions simultaneously use different electron acceptors[J]. Water Research, 2016,102(1): 125-137.
    [2] FAN Z, ZENG W, MENG Q, et al. Achieving enhanced biological phosphorus removal utilizing waste activated sludge as sole carbon source and simultaneous sludge reduction in sequencing batch reactor[J]. Science of the Total Environment, 2021,799(10): 149291.
    [3] LI Y, RAHMAN S M, LI G, et al. The composition and implications of polyphosphate-metal in enhanced biological phosphorus removal systems[J]. Environmental Science & Technology, 2019,53(3): 1536-1544.
    [4] JI J T, PENG Y Z, WANG B, et al. A novel SNPR process for advanced nitrogen and phosphorus removal from main stream wastewater based on anammox, endogenous partial-denitrification and denitrifying dephosphatation[J]. Water Research, 2020,170(1): 115363.
    [5] MENG Q G, ZENG W, WANG B G, et al. New insights in the competition of polyphosphate-accumulating organisms and glycogen-accumulating organisms under glycogen accumulating metabolism with trace Poly-P using flow cytometry[J]. Chemical Engineering Journal,2020,385(1):123915.
    [6] BAI X, MCK M M, NEUFELD J D. Nitrogen removal pathways during simultaneous nitrification, denitrification, and phosphorus removal under low temperature and dissolved oxygen conditions[J] Bioresource Technology, 2022, 354: 127177.
    [7] KAO C, LI J, GAO R, et al. Advanced nitrogen removal from real municipal wastewater by multiple coupling nitritation, denitritation and endogenous denitritation with anammox in a single suspended sludge bioreactor[J]. Water Research, 2022, 221(1): 118749.
    [8] YUAN C, WANG B, PENG Y, et al. Enhanced nutrient removal of simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) in a single-stage an aerobic/micro-aerobic sequencing batch reactor for treating real sewage with low carbon/nitrogen[J]. Chemosphere, 2020,257:127097.
    [9] WANG Y, GUO G, WANG H, et al. Long-term impact of an aerobic reaction time on the performance and granular characteristics of granular denitrifying biological phosphorus removal systems[J]. Water Research, 2013,47(14): 5326-5337.
    [10] 巩有奎, 李美玲, 孙洪伟. 不同NO-3浓度An/A/O-SBR系统PAOs-GAOs竞争及N2O释放特性[J].化工学报, 2021,72(3): 1675-1683.
    [11] ZHANG S. HUANG Y, HUA Y. Denitrifying dephosphatation over nitrite:effects of nitrite concentration, organic carbon, and pH[J]. Bioresource Technology, 2010,101(11):3870-3875.
    [12] PANSWAD T, DOUNG C A, JIN A. Temperature effect on microbial community of enhanced biological phosphorus removal system[J]. Water Research, 2003, 37(2):409-415.
    [13] LIU H, ZENG W, MENG Q, et al. Phosphorus removal performance, intracellular metabolites and clade-level community structure of Tetrasphaera-dominated polyphosphate accumulating organisms at different temperatures[J]. Science of the Total Environment, 2022,842(10):156913.
    [14] WANG B, ZENG W, FAN Z, et al. Effects of polyaluminium chloride addition on community structures of polyphosphate and glycogen accumulating organisms in biological phosphorus removal (BPR) systems[J]. Bioresource Technology,2019, 297, 122431.
    [15] APHA (American Public Health Association). Standard Methods for the Examination of Water and Wastewater. Baltimore[M]. Port City Press, 1998.
    [16] YANG Q, LIU X H, PENG C Y, et al. N2O production during nitrogen removal via nitrite from domestic wastewater: main sources and control method[J]. Environmental Science & Technology, 2009, 43(24): 9400-9406.
    [17] OEHMEN A, KELLER L. B, ZENG R J, et al. Optimisation of poly-beta-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems[J]. Journal of Chromatography A, 2005, 1070(1/2): 131-136.
    [18] OEHMEN A, ZENG R J, YUAN Z, et al. Anaerobic metabolism of propionate by polyphosphate-accumulating organisms in enhanced biological phosphorus removal systems[J]. Biotechnology and Bioengineering, 2005, 91(1): 43-53.
    [19] SOTO O, ROECKEL M. Kinetics of cross-inhibited denitrification of a high load wastewater[J]. Enzyme Microb Tech, 2007, 40(6): 1627-1634.
    [20] NODA N, KANEKO N, MIKAMI M, et al. Effects of SRT and DO on N2O reductase activity in an anoxic-oxic activated sludge system[J]. Wat Sci Technol, 2003,48(11/12):363-370.
    [21] BRDJANOVIC D, LOOSDRECHT M C M V, HOOIJMANS C M, et al. Temperature effects on physiology of biological phosphorus removal[J]. Journal of Environmental Engineering, 1997, 123(2): 144-152.
    [22] RIBERA-GUARDIA A, MARQUES R, ARANGIO C, et al. Distinctive denitrifying capabilities lead to differences in N2O production by denitrifying polyphosphate accumulating organisms and denitrifying glycogen accumulating organisms[J]. Bioresource Technology, 2016, 219: 106-113.
    [23] OEHMEN A, CARVALHO G, LOPEZ C M, et al. Incorporating microbial ecology into the metabolic modelling of polyphosphate accumulating organisms and glycogen accumulating organisms[J]. Water Research, 2010,44(17):4992-5004.
    [24] WANG X, WANG S, ZHAO J, et al. A novel stoichio-metries methodology to quantify functional microor-ganisms in simultaneous nitrification-endogenous denitrification and phosphorous removal (SNEDPR)[J]. Water Research, 2015, 95(15): 319-329.
    [25] THIRD K A, BURNETT N, CORD-RUWISCH R, Simultaneous nitrification and denitrification using stored substrate (PHB) as the electron donor in an SBR[J]. Biotechnology Bioengeering, 2003, 83(6): 706-720.
    [26] ZENG W, BAI X L, GUO Y, et al. Interaction of "Candidatus accumulibacter" and nitrifying bacteria to achieve energy efficient denitrifying phosphorus removal via nitrite pathway from sewage[J]. Enzyme and Microbial Technology, 2017,105(1):1-8.
    [27] YUAN C S, WANH B, PENG Y Z, et al. Enhanced nutrient removal of simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) in a single-stage anaerobic/micro-aerobic sequencing batch reactor for treating real sewage with low carbon/nitrogen[J]. Chemosphere, 2020,257:127097.
    [28] ZHOU Y, PIJUAN M, ZENG R J, et al. Free nitrous acid inhibition on nitrous oxide reduction by a denitrifying enhanced biological phosphorus removal sludge[J]. Environmental Science & Technology, 2008, 42(22): 8260-8265.
    [29] MASSARA T M, MALAMIS S, GUISASOLA A, et al. A review on nitrous oxide (N2O) emissions during biological nutrient removal from municipal wastewater and sludge reject water[J]. Science of the Total Environment, 2017,596/597(1):106-123.
    [30] 马娟,宋相蕊,李璐. 碳源对反硝化过程NO-2积累及出水pH值的影响[J].中国环境科学. 2014,34(10): 2556-2561.
    [31] WEI Y, WANG S Y, MA B, et al. The effect of poly-β-hydroxyalkanoates degradation rate on nitrous oxide production in a denitrifying phosphorus removal system[J]. Bioresource Technology, 2014, 170(1): 175-182.
    [32] ZHOU Y, OEMEN A, LIM M, et al. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants[J]. Water Research, 2011, 45(15): 4672-4682.
    [33] PAUDEL S, OHKYUAK, SAMIR. Effects of temperature on nitrous oxide (N2O) emission from intensive aquaculture system[J]. Applied Economic Perspectives and Policy, 2015,518(1):16-23.
    [34] NEMETH D D, WAGNER-RIDDLE C, DUNFIELD K E. Abundance and gene expression in nitrifier and denitrifier communities associated with a field scale spring thaw N2O flux event[J]. Soil Biology Biochemistry,2014,73(1): 1-9.
    [35] KIM S W,MIYAHARA M, FUSHINOBU S, et al. Nitrous oxide emission from nitrifying activated sludge dependent on denitrification by ammonia-oxidizing bacteria[J]. Bioresource Technology,2010,101(11):3958-3963.
  • 加载中
计量
  • 文章访问数:  66
  • HTML全文浏览量:  11
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-02
  • 网络出版日期:  2024-03-08

目录

    /

    返回文章
    返回