AN ECO-TYPE MICROBIAL FUEL CELL FOR SIMULTANEOUS ELECTRICITY GENERATION AND NITROGEN REMOVAL
-
摘要: 生态型微生物燃料电池(ecotype-microbial fuel cell,E-MFC)是1种将微生物燃料电池(microbial fuel cell,MFC)与水生动植物结合在一起的新型废水处理技术。为研究E-MFC中微生物、水生植物和底栖动物之间的共生协同作用,设置了沉积物MFC(sediment-microbial fuel cell,S-MFC)、湿地植物MFC(wetland plant-microbial fuel cell,WP-MFC,种植水生植物)和生态型MFC(E-MFC,引入水生植物和底栖动物)3种反应装置, 分别测试了其产电能力和脱氮效果,考察了水力停留时间(HRT)和阴极曝气流量对E-MFC脱氮产电效能的影响,并探讨了脱氮机理。结果表明:E-MFC脱氮产电性能均优于其他2种。在处理相同量的有机废水时,E-MFC的最大产电功率密度比S-MFC和WP-MFC分别高129.4%和47.2%,NH4+-N去除率分别高37.6百分点和11.2百分点,E-MFC的NO3--N去除率可达96%以上。进一步研究表明,当HRT为72 h,进水流量为0.50 L/d时,E-MFC获得最高产电电压为463 mV,此时输出功率密度为27.31 mW/m2。当曝气流量为60 L/h时,E-MFC的最大输出功率密度可达38.12 mW/m2。E-MFC中水生动物扰动等活动增强了氧传质、有机质分解和养分循环,为植物生长提供了充足的营养物质,同时植物根系泌氧也为根际微生物的生长和代谢维持了良好的环境条件。E-MFC中微生物、水生植物和底栖动物形成了一种相互促进、协同作用的关系,从而强化了水体中氮的去除。E-MFC作为可回收电能的新型生态修复技术,在污水处理领域具有良好的发展前景。
-
关键词:
- 生态型微生物燃料电池 /
- 脱氮 /
- 产电 /
- 人工湿地 /
- 水力停留时间
Abstract: Ecotype-microbial fuel cell (E-MFC) is a novel wastewater treatment technology that combines microbial fuel cell (MFC) with aquatic animals and plants. To study the symbiotic synergy among "microorganisms, aquatic plants and benthic animals" in E-MFC, a series of reactors consisting of sediment MFC (S-MFC), wetland plant MFC (WP-MFC, planting aquatic plants) and ecotype-MFC (E-MFC, introducing aquatic plants and benthic animals) were set up in this experiment, to test their electricity production capacity and nitrogen removal effects. The effects of hydraulic retention time (HRT) and cathode aeration on nitrogen removal and electricity production of the E-MFC were investigated, and the main nitrogen removal mechanisms were discussed. The results showed that the nitrogen removal and electricity production performance of the E-MFC were better than the other two reactors. When treating the same amount of organic wastewater, the maximum power density of E-MFC was 129.4% and 47.2% higher than that of S-MFC and WP-MFC, ammonia nitrogen removal efficiency was 37.6% and 11.2% higher, respectively, and nitrate nitrogen removal efficiency reached 96% above. Further research showed that when HRT was 72 h and water inflow was 0.50 L/d, the E-MFC obtained the highest output voltage of 463 mV, and the corresponding output power density was 27.31 mW/m2. When the cathodic aeration rate was 60 L/h, the maximum output power reached 38.12 mW/m2. In the E-MFC, the disturbance and other activities of aquatic animals enhanced oxygen mass transfer, organic matter decomposition, and nutrient cycling, providing sufficient nutrients for plant growth. In addition, root oxygen secretion also maintained good environmental conditions for the growth and metabolism of rhizosphere microorganisms. Microorganisms, aquatic plants, and benthic animals in the E-MFC formed a relationship of mutual promotion and synergy, thus strengthening the removal of nitrogen from wastewater. As a new ecological restoration technology, E-MFC can recover electric energy and have a good development prospect in the field of wastewater treatment. -
[1] 石玉翠, 罗昕怡, 唐刚, 等. 人工湿地-微生物燃料电池耦合系统的研究进展及展望[J]. 环境工程, 2021, 39(8): 25-33. [2] WU Q, JIAO S P, MA M X, et al. Microbial fuel cell system: a promising technology for pollutant removal and environmental remediation[J]. Environmental Science and Pollution Research International, 2020, 27(7): 6749-6764. [3] 陈婧, 秦歌, 余仁栋,等. 人工湿地-微生物燃料电池性能优化研究进展[J]. 水处理技术, 2022, 48(7): 25-31. [4] 鹿钦礼, 李亮, 刘金亮, 等. 微生物燃料电池的应用研究进展[J]. 环境工程, 2019, 37(8): 95-100. [5] 王义安, 王超, 林华, 等. 人工湿地与微生物燃料电池耦合系统的研究进展[J]. 现代化工, 2021, 41(3): 21-25. [6] 陈传杰, 张铭川, 陈熙, 等. 核桃壳生物炭电极在微生物燃料电池中的产电性能及其对污染物的去除性能[J]. 环境工程学报, 2022, 16(10): 3281-3290. [7] KOFFI N J, OKABE S. Bioelectrochemical anoxic ammonium nitrogen removal by an MFC driven single chamber microbial electrolysis cell[J]. Chemosphere, 2021, 274: 129715. [8] 夏函青, 伍永钢, 江文亭, 等. 人工湿地-微生物燃料电池系统的发展及展望[J]. 化工进展, 2019, 38(12): 5548-5556. [9] 谢静怡, 卢学强, 李海笑. 人工湿地型微生物燃料电池研究进展述评[J]. 安全与环境学报, 2020, 20(1): 206-215. [10] LIU S T, FENG X J, XUE H P, et al. Bioenergy generation and nitrogen removal in a novel ecological-microbial fuel cell[J]. Chemosphere, 2021, 278: 130450. [11] CARMALIN A S, SREEJA S. Green energy generation from plant microbial fuel cells (PMFC) using compost and a novel clay separator[J]. Sustainable Energy Technologies and Assessments, 2017, 21: 59-66. [12] ASHEESH K Y, PURNANJALI D, AYUSMAN M, et al. Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal[J]. Ecological Engineering, 2012, 47: 126-131. [13] ABDULLAH A M, TAHEREH J, MAHAD S B, et al. Energy recovery and carbon/nitrogen removal from sewage and contaminated groundwater in a coupled hydrolytic-acidogenic sequencing batch reactor and denitrifying biocathode microbial fuel cell[J]. Environmental Research, 2020, 183: 10927-10938. [14] MOHAMED A, SAINAB F, SAMA A, et al. Continuous and scalable applications of microbial fuel cells: a critical review[J]. Reviews in Environmental Science and Bio/Technology, 2019, 18(3): 543-578. [15] 黄珊, 陆勇泽, 朱光灿, 等. 耦合生物阴极SND的MLMB-MFC的构建与运行[J]. 化工学报, 2020, 71(4): 1772-1780. [16] 王晋, 沈钱勇, 杨彦. 植物微生物燃料电池修复Cr(Ⅵ)污染湿地土壤及机理研究[J]. 环境科学学报, 2019, 39(2): 518-526. [17] 李耀睿, 花修艺, 毛丹, 等. 颤蚓及其生物扰动对表层沉积物微环境pH和溶解氧的影响[J]. 吉林大学学报(理学版), 2015, 53(6): 1334-1340. [18] TOU, AZRI, SADI, et al. Chlorophytum microbial fuel cell characterization[J]. International Journal of Green Energy, 2019, 16(12): 947-959. [19] 汪祝方, 赵志淼, 程梦雨, 等. 植物群落对湿地净化生活污水的影响[J]. 环境工程学报, 2021, 15(1): 126-135. [20] 许丹, 黄铭意, 韩胡威, 等. 三种挺水植物对CW-MFC耦合系统脱氮及产电性能的影响[J]. 水生生物学报, 2023, 47(7): 1148-1156. [21] GARAI P, BANERJEE P, SHARMA P, et al. Nitrate-induced toxicity and potential attenuation of behavioural and stress biomarkers in Tubifex[J]. International Journal of Environmental Research, 2022, 16(4): 22-43. [22] XU F, CAO F Q, KONG Q, et al. Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell[J]. Chemical Engineering Journal, 2018, 339: 479-486. [23] SAZ Ç, TURE C, TURKER O C, et al. Effect of vegetation type on treatment performance and bioelectric production of constructed wetland modules combined with microbial fuel cell (CW-MFC) treating synthetic wastewater[J]. Environmental Science and Pollution Research, 2018, 25(9): 8777-8792. [24] WANG J F, SONG X S, WANG Y H, et al. Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophytes[J]. Science of the Total Environment, 2017, 607/608: 53-62. [25] OON Y L, ONG S A, HO L N, et al. Role of macrophyte and effect of supplementary aeration in up-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery[J]. Bioresource Technology, 2017, 224: 265-275. [26] HABIBUL N, HU Y, WANG Y K, et al. Bioelectrochemical chromium(Ⅵ) removal in plant-microbial fuel cells[J]. Environmental Science & Technology, 2016, 50(7): 3882-3890. [27] OON Y L, ONG S A, HO L N, et al. Hybrid system up-flow constructed wetland integrated with microbial fuel cell for simultaneous wastewater treatment and electricity generation[J]. Bioresource Technology, 2015, 186: 270-275. [28] WANG J, HOU J, XIA L, et al. The combined effect of dissolved oxygen and COD/N on nitrogen removal and the corresponding mechanisms in intermittent aeration constructed wetlands[J]. Biochemical Engineering Journal, 2020, 153(C): 107400-107409. [29] RACHNARIN N, ROSHAN R. Plant microbial fuel cells: a promising biosystems engineering[J]. Renewable and Sustainable Energy Reviews, 2017, 76: 81-89. [30] 侯登峰, 张皓驰, 李先宁. 微生物燃料电池对废水脱氮性能的影响因素综述[J]. 环境污染与防治, 2022, 44(8): 1091-1096, 1120. [31] HUANG X F, YE G Y, YI N K, et al. Effect of plant physiological characteristics on the removal of conventional and emerging pollutants from aquaculture wastewater by constructed wetlands[J]. Ecological Engineering, 2019, 135: 45-53. [32] 张克, 田双超, 窦雪雁, 等. 厌氧/好氧生物接触氧化工艺耦合微生物燃料电池技术处理农村生活污水[J]. 环境工程, 2022, 40(3): 139-146.
点击查看大图
计量
- 文章访问数: 105
- HTML全文浏览量: 11
- PDF下载量: 3
- 被引次数: 0