SCREENING, IDENTIFICATION, AND VALIDATION OF FUNCTIONAL BACTERIAL STRAINS IN DENITRIFICATION AND DESULFURIZATION PROCESS
-
摘要: 反硝化硫氧化工艺是处理含硫含氮有机废水生物处理技术中最具潜力的污水处理技术之一。为了解反硝化硫氧化工艺中发挥主要功能的菌属信息,同步运行3个膨胀颗粒污泥床反应器,测定反硝化硫氧化效能,解析活性污泥微生物群落结构变化,分离筛选出活性污泥中的菌株并进行功能验证。结果表明:3个反应器稳定运行后均可实现100 mg/L NO3--N和100 mg/L Ac--C的100%去除,最高可以去除90%的200 mg/L S2-;16S rRNA分析表明:稳定运行反应器活性污泥的微生物群落结构和多样性中,相对丰度较高的5个菌属为Azoarcus、Pseudomonas、Thauera、Arthrobacter和Desulfomicrobium;采用平板分菌和流式分选2种分菌方式共得到分属于19个菌属的50株菌,综合活性污泥群落结构和碳氮硫污染物的去除率,初步确定Azoarcus、Thauera、Pseudomonas、Acinetobacter和Agrobacterium为反硝化硫氧化工艺的功能菌属。
-
关键词:
- 反硝化硫氧化工艺 /
- 膨胀颗粒污泥床反应器 /
- 颗粒活性污泥 /
- 功能菌分离筛选 /
- 微生物群落结构
Abstract: The denitrifying sulfur oxidation process is one of the most potential sewage treatment technologies in biological treatment for treating sulfur-containing and nitrogen-containing organic wastewater. In order to understand the information of bacteria that mainly play a role in the denitrifying sulfur oxidation process, three expanded granular sludge bed reactors were operated simultaneously to determine the oxidation efficiency of sulfur denitrification, analyze the changes of the microbial community structure of activated sludge, isolate and screen out the strains in activated sludge and verify their function. The results showed that 100% of 100 mg/L NO3--N and 100 mg/L Ac--C can be removed after stable operation of the three reactors, and up to 90% of 200 mg/L S2- can be removed. 16S rRNA analysis was used to analyze the microbial community structure and diversity of activated sludge in the stable operation reactor, and found that the five genera with high relative abundance were Azoarcus, Pseudomonas, Thauera, Arthrobacter and Desulfomicrobium. A total of 50 strains belonging to 19 genera were obtained by plate separation and flow cytometry separation, and the removal rate of carbon, nitrogen and sulfur pollutants was synthesized to preliminarily determine that Azoarcus, Thauera, Pseudomonas, Acinetobacter and Agrobacterium were the functional genera of denitrified sulfur oxidation process. -
[1] 苏柏懿,吴莉娜,王春艳,等.硫自养反硝化在工业废水处理中的研究进展[J].应用化工,2022,51(4):1070-1076. [2] HUANG C, LIU Q, LI Z L, et al. Relationship between functional bacteria in a denitrification desulfurization system under autotrophic, heterotrophic, and mixotrophic conditions[J]. Water Research,2021,188:116526. [3] XU X J, CHEN C, GUO H, et al. Characterization of a newly isolated strain Pseudomonas sp. C27 for sulfide oxidation: reaction kinetics and stoichiometry[J]. Scientific Reports,2016,6(1):1-10. [4] WANG A J, DU D Z, REN N Q, et al. An innovative process of simultaneous desulfurization and denitrification by Thiobacillus denitrificans[J]. Journal of Environmental Science and Health,2005, 40(10):1939-1949. [5] HUANG C, LIU W Z, LI Z L, et al. High recycling efficiency and elemental sulfur purity achieved in a biofilm formed membrane filtration reactor[J]. Water Research,2018,130:1-12. [6] ZHANG R C, XU X J, CHEN C, et al. Interactions of functional bacteria and their contributions to the performance in integrated autotrophic and heterotrophic denitrification[J]. Water Research,2018,143:355-366. [7] TAN W B, HUANG C, CHEN C, et al. Bioaugmentation of activated sludge with elemental sulfur producing strain Thiopseudomonas denitrificans X2 against nitrate shock load[J]. Bioresource Technology,2016,220:647-650. [8] PISHGAR R, DOMINIC J A, SHENG Z, et al. Denitrification performance and microbial versatility in response to different selection pressures[J]. Bioresource Technology,2019,281:72-83. [9] HUANG C, LIU Q, CHEN X Q, et al. Bioaugmentation with Thiobacillus sp. H1 in an autotrophic denitrification desulfurization microbial reactor: microbial community changes and relationship[J]. Environmental Research,2020,189:109927. [10] HUANG S, YU D S, CHEN G H, et al. Realization of nitrite accumulation in a sulfide-driven autotrophic denitrification process: simultaneous nitrate and sulfur removal[J]. Chemosphere,2021,278:130413. [11] 张若晨.自养—异养联合反硝化系统中功能菌群互作规律及代谢机制[D].哈尔滨:哈尔滨工业大学,2019. [12] 陈雪琪.废水脱硫脱氮工艺效能调控及生物强化策略研究[D].哈尔滨:哈尔滨工业大学,2020. [13] SPEIRS L B M, RICE D T F, PETROVSKI S, et al. The phylogeny, biodiversity, and ecology of the Chloroflexi in activated sludge[J]. Frontiers in Microbiology, 2019,10:2015. [14] 马晓丹.脱硫脱氮细菌的分离筛选及其生物强化效能研究[D]. 哈尔滨:哈尔滨工业大学,2015. [15] 包海花.高效反硝化细菌的筛选及在污水脱氮中的应用[D].郑州:河南农业大学,2022. [16] 秦亚玲,梁宗林,宋阳,等.高通量测序分析云南腾冲热海热泉微生物多样性[J].微生物学通报,2019,46(10):2482-2493. [17] 高健.生物反硝化硫资源化颗粒污泥技术特性及其微生态机理[D].上海:华东理工大学,2020.
点击查看大图
计量
- 文章访问数: 63
- HTML全文浏览量: 8
- PDF下载量: 3
- 被引次数: 0