EVALUATION OF FARMLAND NON-POINT SOURCE POLLUTION CONTROL TECHNOLOGY IN LIAOHE RIVER BASIN BASED ON AHP-FCE METHOD
-
摘要: 由于化肥和农药施用量的不断增加,以及农村生活污水的任意排放,导致辽河流域农田面源污染治理面临巨大挑战。如何因地制宜地合理选择农田面源污染治理技术,尚缺乏科学有效的评价方法。构建了辽河流域农田面源污染治理技术评价指标体系,基于层次分析-模糊综合评价法对10种典型的农田面源污染治理技术进行了综合量化评价。采用层次分析法结合Spyder软件计算指标权重值,结果表明:氨氮去除率、TP去除率、水质净化效率、工程运行维护管理费用、冬季净化稳定性、景观多样性指数的综合权重值最高,是辽河流域农田面源污染治理技术的重要评价指标。采用模糊综合评价法与Matlab软件相结合计算指标隶属度与模糊综合评价值,结果表明:生态拦截沟渠技术的模糊综合指标值为3.8872,可作为过程拦截技术中的优选技术;人工湿地技术的模糊综合评价值为3.9304,可作为末端治理技术中的最优技术。该评价结果可为选择适宜的辽河流域农田面源污染治理技术提供理论依据,也可为其他同类污染治理技术评价和制订相关政策提供有效的理论支撑。Abstract: Due to the increasing application of chemical fertilizers and pesticides in farmland and the random discharge of rural domestic sewage, the treatment of farmland non-point source pollution in Liaohe River is facing great challenges. At present, there is still a lack of scientific and effective evaluation methods on the farmland non-point source pollution control. In this study, an evaluation index system of farmland non-point source pollution control technology was constructed with 1 target layer, 3 criteria layers, 5 indicator layers, and 14 sub-indicator layers. According to the expert rating, the analytic hierarchy process (AHP) and fuzzy comprehensive evaluation (FCE) method were applied to evaluate the 10 typical farmland non-point source pollution control technologies comprehensively and quantitatively. AHP method and Spyder Software were used to calculate the index weight value. The results showed that the comprehensive weight values of ammonia nitrogen removal rate, TP removal rate, water quality purification efficiency, project operation cost, winter purification stability and landscape diversity index were the highest, which were the most important evaluation indexes in selecting the farmland non-point source pollution treatment technology for Liaohe River. The FCE method and Matlab software were used to calculate the index subordination degree and fuzzy comprehensive evaluation value. The results showed that ecological interception ditch technology was the best technology among process interception technologies with a fuzzy comprehensive index value of 3.8872; the constructed wetland technology was the optimal technology of the terminal treatment technologies with a fuzzy comprehensive evaluation value of 3.9304. This study provides a theoretical basis for selecting suitable farmland non-point source pollution control technology in Liaohe River, and also provides effective support for the evaluation of other similar pollution control technology and formulation of relevant policies.
-
[1] 胡春媛,陆超,方书义. 辽河流域农田灌溉发展对策研究[J]. 水资源开发与管理,2021,12:35-39. [2] 张新月,董怡华,张盛宇,等. 辽河流域农田面源污染治理技术研究[J]. 节能,2019,38(7):94-96. [3] LI S,LI J K,HAO G R,et al. Evaluation of best management practices for non-point source pollution based on the SWAT model in the Hanjiang River Basin, China[J]. Water Science & Technology Water Supply, 2021, 21(2):1-18. [4] 袁哲,许秋瑾,宋永会,等. 辽河流域水污染治理历程与"十四五"控制策略[J]. 环境科学研究,2020,33(8):1805-1812. [5] 郭庶,罗光财,彭丹. 融合专家法与层次分析法的地铁车站风险评估[J]. 采矿技术,2018,18(5):73-76,88. [6] 吴英缓,苏宜强,成乐祥. 基于熵权法和专家打分法的企业节能减排效果评估方法[J]. 电器与能效管理技术,2015(16):63-68. [7] JOLLIFFE L T, CADIMA J. Principal component analysis: a review and recent development[J]. Philosophical Transactions of the Royal Society Mathematical Physical & Engineering Sciences, 2016, 374:1-16. [8] TUNG C T, LEE Y J. A novel approach to construct grey principal component analysis evaluation model[J]. Expert Systems with Applications, 2009, 36:5916-5920. [9] CHEN H X, ZHANG L, ZOU W J, et al. Regional differences of air pollution in China: comparison of clustering analysis and systematic clustering methods of panel data based on gray relational analysis[J]. Air Quality, Atmosphere & Health, 2020, 13:1257-1269. [10] GBENGA A O, JONATHAN N I, OLAYEMI O J, et al. Assessment and delineation of groundwater potential zones using integrated geospatial techniques and analytic hierarchy process[J]. Applied Water Science, 2022, 12:276. [11] SAHOO S, DHAR A, KAR A. Environmental vulnerability assessment using Grey Analytic Hierarchy Process based model[J]. Environmental Impact Assessment Review, 2016, 56:145-154. [12] 于宗绪,马东春,范秀娟,等. 基于AHP法和模糊综合评价法的城市水环境治理PPP项目绩效评价研究[J]. 生态经济,2020,36(10):190-194. [13] KIM S, LEE S W, PARK S R, et al. Socioeconomic risks and their impacts on ecological river health in South Korea: An application of the analytic hierarchy process[J]. Sustainability, 2021, 13(11):6287. [14] 刘建伟,赵高辉. 基于AHP的北京市典型农村污水处理技术适用性评估[J]. 水利水电技术,2019,50(5):260-267. [15] HU J, CHEN J, CHEN Z, et al. Risk assessment of seismic hazards in hydraulic fracturing areas based on fuzzy comprehensive evaluation and AHP method (FAHP): a case analysis of Shangluo area in Yibin City, Sichuan Province, China[J]. Journal of Petroleum Science and Engineering, 2018, 170:797-812. [16] 边伟,崔皎,汪宗太,等. 模糊综合评价法在放射性废物处理技术评价中的应用[J]. 广东化工,2022,49(9):137-140. [17] 秦川. 模糊综合评价在焦化废水处理技术中的应用[J]. 化工环保,2009,29(5):453-457. [18] CHEN S S, WANG H X, JIANG H, et al. Risk assessment of corroded casing based on analytic hierarchy process and fuzzy comprehensive evaluation[J]. Petroleum Science, 2021, 18:591-602. [19] 张诗. 基于AHP-模糊综合评价法的农村生活污水处理技术评价研究[D]. 昆明:云南师范大学,2022. [20] 李吉鹏,马丽,陆志强. 运用模糊层次分析法优选制浆造纸废水深度处理方案[J]. 环境工程学报,2012,6(11):4089-4096. [21] 史菲菲,王雯,但智钢,等. 基于AHP-FCE的电解锰行业废水全过程控制技术评估[J]. 有色金属,2022(7):109-116,121. [22] 李娟,成璐瑶,曾萍,等. 基于AHP-FCE模型的制药废水处理技术综合评价[J]. 环境工程技术学报,2021(3):591-598. [23] 王敏,尹崇鑫,程金兰,等. 层次分析-模糊综合评价法在制浆造纸水污染控制技术评估中的应用[J]. 林业工程学报,2021,6(4):107-113. [24] 阮久莉,王艺博,郭玉文. 基于层次分析-模糊综合评价法的锌冶炼行业水污染控制技术评价[J]. 环境工程技术学报,2021,11(5):976-982. [25] YOUSRA K, CHERKAOUI A. Fuzzy analytical hierarchy process and fuzzy comprehensive evaluation method applied to assess and improve human and organizational factors maturity in mining industry[J]. Advance in Science Technology and Engineering Systems Journal, 2021,6(2):75-84. [26] 韩利,梅强,陆玉梅,等. AHP-模糊综合评价方法的分析与研究[J]. 中国安全科学学报,2004(7):89-92. [27] 吕跃进. 基于模糊一致矩阵的模糊层次分析法的排序[J]. 模糊系统与数学,2002(2):79-85. [28] 邓雪,李家铭,曾浩健,等. 层次分析法权重计算方法分析及其应用研究[J]. 数学的实践与认识,2012,42(7):93-100. [29] WANG T,ZHU B,ZHOU M H. Ecological ditch system for nutrient removal of rural domestic sewage in the hilly area of the central Sichuan Basin,China[J]. Journal of Hydrology,2019,570:839-849. [30] 潘俊,孙舶洋,魏炜,等. 微纳米曝气-生态浮岛联合技术处理氮磷污染水体[J]. 环境工程,2020,38(5):49-54,209. [31] CHAND N,KUMAR K,SUTHAR S. Enhanced wastewater nutrients removal in vertical subsurface flow constructed wetland:effect of biochar addition and tidal flow operation[J]. Chemosphere,2022,286:131742. [32] 李玉凤,刘红玉,刘军志,等. 农村多水塘系统景观结构对非点源污染中氮截留效应的影响[J]. 环境科学,2018,39(11):4999-5006. [33] WEI C J, WU W Z. Performance of single-pass and by-pass multi-step multi-soil-layering systems for low-(C/N)-ratio polluted river water treatment[J]. Chemosphere, 2018, 206:579-586. [34] 何钟响,董思俊,刘寿涛,等. 植物塘+人工湿地+吸附池系统对灌溉水中痕量Cd的去除效果[J]. 农业环境科学学报,2020,39(6):1293-1302. [35] KASAK K, TRUU J, OSTONEN L, et al. Biochar enhances plant growth and nutrient removal in horizontal subsurface flow constructed wetlands[J]. Science of the Total Environment, 2018, 639:67-74. [36] 柳林妹,滕彦国,杨光,等. 人工湿地去除污水中抗生素及其抗性基因研究进展[J]. 环境工程,2022,40(12):270-280. [37] 孙真,陈涵肖,付尚礼,等. 生态浮岛处理微污染水体综述[J]. 环境工程,2018,36(12):10-15. [38] 李丹,王欣泽,刘剑楠,等. 多级土壤渗滤系统填料的脱氮除磷性能研究[J]. 水处理技术,2019,45(10):24-29.
点击查看大图
计量
- 文章访问数: 79
- HTML全文浏览量: 18
- PDF下载量: 4
- 被引次数: 0