EFFECT OF HUMIDITY CONTROL OF FLUE GAS FROM COAL-FIRED POWER PLANTS ON PM2.5 SAMPLING
-
摘要: 为研究脱硫后高湿烟气相对湿度的改变对颗粒物采样结果的影响,使用扩散干燥管对烟气进行除湿,并分析不同相对湿度下PM2.5的粒径分布、传输损失和质量浓度变化。结果显示,模拟烟气湿度越高,PM2.5粒数浓度和质量浓度也随之升高。40%相对湿度下,模拟烟气中ρ(PM2.5)为22.77 mg/m3,粒数浓度约为1.16×106 个/cm3,模拟烟气湿度提升至50%、60%和80%时,ρ(PM2.5)分别升高1.06,4.35,4.69倍,粒数浓度分别升高1.31,1.70,1.76倍;使用扩散干燥管对模拟高湿烟气除湿,采集到的颗粒物质量浓度有不同程度的下降,最高相对湿度(94.9%)下,ρ(PM2.5)为27.17 mg/Nm3,湿度81.4%、68.5%、48.7%和30.4%时,质量浓度相比最高湿度时分别降低了14.5%、28.8%、43.0%和45.7%;烟气除湿可降低PM2.5在管路内和切割头内的损失,在94.9%、81.4%和68.5%相对湿度下采集到的ρ(PM2.5)分别是对照组的3.02,2.73,2.57倍。高湿烟气除湿降低了颗粒物的含水率,使得PM2.5的质量浓度测量结果随着除湿强度增加而降低,但因除湿降低了颗粒物损失,相比对照组最终采集到的PM2.5质量浓度随着除湿强度增加而显著提升。Abstract: In order to investigate the effect of relative humidity (RH) of high humidity flne gas after desulfurization on the sampling results of PM2.5 concentration from coal-fired power plants, the diffusion dryers were used to control the RH of the flue gas. Particle size distribution, particle loss, and PM2.5 mass concentration were determined with a variety of RHs. The results show that a higher RH of the flue gas led to an increase in the number and mass concentration of PM2.5. For the RH of 40%, the mass concentration of PM2.5 was 22.77 mg/m3 and the total number concentration of PM2.5 was 1.16×106 P/cm3. As the RH of the flue gas increased to 50%, 60%, and 80%, the mass concentration of PM2.5 increased by 1.06, 4.35, 4.69 times; and the number concentration was increased by 1.31, 1.70, 1.76 times, respectively. When using a diffusion drying tube to dehumidify the simulated high-humidity flue gas, the mass concentration of particles collected decreased to varying degrees. At the highest relative humidity (94.9%), the mass concentration of PM2.5 was 27.17 mg/Nm3, and at the humidity of 81.4%, 68.5%, 48.7%, 30.4%, the mass concentration was 14.5%, 28.8%, 43.0%, 45.7% lower than that at the highest humidity. Flue gas dehumidification reduced the loss of PM2.5 in the pipeline and the cutting heads. The mass concentration of PM2.5 collected at relative humidity of 94.9%, 81.4%, 68.5% was 3.02, 2.73, 2.57 times higher than that of the control group. High humidity flue gas dehumidification reduced the moisture content of particulate matter, resulting in a lower measurement result of PM2.5 mass concentration. However, due to the reduction of particulate matter loss, the final collected PM2.5 mass concentration was significantly increased.
-
Key words:
- coal-fired power plant /
- flue gas humidity /
- PM2.5 sampling /
- diffusion dryer /
- size distribution /
- particle loss
-
[1] 江建平,张志中,王丰吉,等.燃煤电厂高湿低浓度烟尘PM2.5采样探索[J].华东科技(学术版),2016(11):429-445. [2] 李博,赵锦洋,吕俊复.燃煤烟气超低排放技术路线选择建议[J].电力科技与环保,2016,32(5):13-15. [3] 柯希玮,蒋苓,吕俊复,等.循环流化床燃烧低污染排放技术研究展望[J].中国工程科学,2021,23(3):120-128. [4] 盛洪产, 周为莉, 楼军, 等. 燃煤热电厂烟气超低排放改造工程实践[J].环境工程, 2019,37(3):124-127. [5] 张周红, 丁少波,张楠, 等. 燃煤电厂湿法脱硫对PM2.5和多环芳烃排放的影响[J]. 环境工程, 2019,37(9):119-124. [6] 国家环境保护局.固定污染源排气中颗粒物测定与气态污染物采样方法:GB/T 16157—1996[S].1996. [7] 国家环境保护部.固定污染源废气低浓度颗粒物的测定重量法:HJ 836—2017[S].2017. [8] 易玉萍,朱法华,段玖祥,等.燃煤电厂低浓度颗粒物的测试方法研究[J].电力科技与环保,2018,34(1):32-36. [9] 常倩云,杨正大,郑成航,等.高湿烟气中超低浓度细颗粒物测试方法研究[J].中国环境科学,2017,37(7):2450-2459. [10] KATEUSZ P, SZULIKOWSKI J. Directional sensitivity of differential pressure sensors of gas velocity used in manual gravimetric measurements of dust emissions from stationary sources[J]. Archives of Environmental Protection, 2015,41(3):83-96. [11] 裴冰.固定源排气中可凝结颗粒物排放与测试探讨[J].中国环境监测,2010,26(6):9-12. [12] 裴冰.燃煤电厂可凝结颗粒物的测试与排放[J].环境科学,2015,36(5):1544-1549. [13] 赵亚楠,王新锋,李锐,等.大气采样干燥技术除湿效果的测试与对比[J].山东大学学报(工学版),2018,48(4):128-136. [14] 戴安.大气颗粒物及部分气态前体物的连续在线观测[J].环境化学,2010,29(6):1193-1194. [15] HENNING S. Seasonal variation of water-soluble ions of the aerosol at the high-alpine site Jungfraujoch (3580 m asl)[J]. Journal of Geophysical Research, 2003,108(D1). [16] YE X N, CHEN T Y, HU D W, et al. A Multifunctional hTDMA system with a robust temperature control[J]. Advances in Atmospheric Sciences, 2009,26(6):1235-1240. [17] 汪淑华,郇延富,冯国栋,等.Nafion干燥器的去溶机理和日常维护[J].分析仪器,2003(1):23-26. [18] 黄正旭,高伟,董俊国,等.实时在线单颗粒气溶胶飞行时间质谱仪的研制[J].质谱学报,2010,31(6):331-336. [19] 谢志勇.Nafion除湿技术在"超低排放"CEMS中的应用[J].科学与财富,2016,12:399. [20] 蒋雄杰,李峰.Nafion干燥器GASS处理系统在"超低排放"CEMS中的工程应用研究[J].分析仪器,2015(3):26-33. [21] HE H, TIE X X, ZHANG Q, et al. Analysis of the causes of heavy aerosol pollution in Beijing, China: a case study with the WRF-Chem model[J]. Particuology, 2015,20:32-40. [22] QUAN J N, GAO Y, ZHANGg Q, et al. Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations[J]. Particuology, 2013,11(1):34-40. [23] ZHANG H X WANG X K, FENG Z W, et al. Multichannel automated chamber system for continuous monitoring of CO2 exchange between the agro-ecosystem or soil and the atmosphere[J]. Acta Ecologica Sinica, 2007,27(4):1273-1281. [24] 李万忠.电厂脱硫方式选择[J].内蒙古电力技术,2011,29(1):58-60. [25] 郭立杰,张金奎.燃煤电厂烟气脱硫技术简介[J].广东化工,2022,49(14):118-119. [26] 刘壮,李永军,刘芳,等.烟气脱硫中高含量亚硫酸钠的氧化过程研究及其工业应用[J].天然气化工(C1化学与化工),2021,46(增刊1):127-134. [27] 麦华俊,蒋靖坤,何正旭,等.一种纳米气溶胶发生系统的设计及性能测试[J].环境科学,2013,34(8):2950-2954. [28] 段飞飞.燃煤电厂烟气深度治理技术研究[J].中国环保产业,2018(11):45-48. [29] 陈小彤,蒋靖坤,邓建国,等.一种气溶胶测量仪器标定系统的设计及性能评估[J].环境科学,2016,37(3):789-794. [30] GIRSHICK S L. Smoke, dust, and haze fundamentals of aerosol dynamics, sheld on K. Friedlander. Second Edition, Oxford University Press,2000[J]. Aerosol Science and Technology, 2002,6(36):799-800. [31] AGGARWAL S K. Handbook of atomization and sprays theory and applications[J]. Aiaa J, 2012,3(50):767-768. [32] 武亚凤.燃煤污染源排放颗粒物采样器比对及电厂测试应用[D]. 北京:中国环境科学研究院,2017. [33] 王珲,宋蔷,姚强,等.电厂湿法脱硫系统对烟气中细颗粒物脱除作用的实验研究[J].中国电机工程学报,2008,28(5):1-7. [34] 潘丹萍,吴昊,鲍静静,等.电厂湿法脱硫系统对烟气中细颗粒物及SO3酸雾脱除作用研究[J].中国电机工程学报,2016,36(16):4356-4362. [35] 续鹏,薛志钢,杨巨生,等.燃煤电厂湿法脱硫对细颗粒物的脱除特性[J].环境科学研究,2017,30(5):784-791. [36] 程俊峰,刘英华,余志良,等.湿法烟气脱硫对工业粉尘的协同脱除[J].工业安全与环保,2020,46(3):76-80. [37] 刘艳梅,闫静,徐文帅,等.超低排放改造后燃煤电厂常规大气污染物排放特征[J].环境科学学报,2020,40(6):1967-1975. [38] 武亚凤,陈建华,蒋靖坤,等.燃煤电厂细颗粒物排放粒径分布特征[J].环境科学研究,2017, 30(8):1174-1183. [39] WILLEKE K, BARON P A. Aerosol measurement principles, techniques, and applications[R].1993.
点击查看大图
计量
- 文章访问数: 74
- HTML全文浏览量: 14
- PDF下载量: 4
- 被引次数: 0