SIMULATION AND OPTIMIZATION OF FLUE GAS DESULFURIZATION WITH COMPLEXED IRON BASED ON ASPEN
-
摘要: 针对高炉煤气催化水解后的高浓度H2S处理需求,利用ASPEN软件的ELECNRTL物性方法和JOBACK基团贡献法估算以乙二胺四乙酸为配体原料的EDTA络合铁物性参数。以填料吸收塔和曝气再生槽2个反应器为核心,搭建了整套高炉煤气络合铁湿法吸收H2S与络合铁脱硫剂曝气氧化再生的反应流程工艺的仿真模型。通过单一因素分析发现,在1000 m3/h的烟气流量下,pH=8时,填料塔与再生槽的反应温度均为25 ℃,反应压力均为0.1 MPa,液气比为5∶1,络合铁浓度为0.05 mol/L,停留时间为40 s,n(O2)∶n(络合亚铁)为4∶1时,此模型能在成本与效率之间实现最优化,最终可以实现99.5%的H2S吸收率和97.6%的络合铁再生率。在此基础上使用正交分析对各因素的影响度进行分析,并将模型应用于实际示范工程的设计。结果表明,工程运行良好,与模型的预期值相近,表明该模型具有良好的应用价值,可用于指导工程设计与优化。Abstract: In order to meet the treatment requirement of high concentration H2S after catalytic hydrolysis of blast furnace gas, the ELECNRTL physical property method of ASPEN and JOBACK group contribution method were used to estimate the physical property parameters of EDTA complexed iron with ethylenediamine tetraacetic acid as the ligand raw material. The simulation model of the complete wet desulphurization process with EDTA complexed iron and oxidation regeneration was built. And two reactors, the packed absorption tower, and the aeration regeneration tank, were set as the core unit. Through the single factor analysis, it was found that under the flue gas flow rate of 1000 m3/h, when pH=8, the reaction temperature of the packed column and the regeneration tank was 25 ℃, the reaction pressure was 0.1 MPa, the liquid-gas ratio was 5:1, the concentration of iron complexation was 0.05 mol/L, the residence time was 40 s and the molar ratio of O2-ferrous complexation was 4:1, the model could be optimized with the balance of cost and efficiency. Under these parameters, the H2S absorption rate and the complex ferrous regeneration rate achieved 99.5% and 97.6%, respectively. On this basis, the orthogonal analysis was used to explore the influence of each factor and the model was applied to the design of the actual demonstration project. The project operated well and its result was like the expected values of the model. It indicated that the model has good application potential and can be used to guide engineering design and optimization.
-
Key words:
- ASPEN /
- simulation /
- hydrogen sulfide /
- complexed iron /
- orthogonal /
- optimization
-
[1] YANG H Y, TATARCHUK B. Novel-doped zinc oxide sorbents for low temperature regenerable desulfurization applications[J]. AIChE Journal, 2010, 56(11): 2898-2904. [2] 李飒,林千果,梁希,等.钢铁高炉煤气二氧化碳捕集技术经济性分析[J].环境工程, 2021, 39(9): 117-122,175. [3] LI P F, WANG G C, DONG Y, et al. A review on desulfurization technologies of blast furnace gases[J]. Current Pollution Reports, 2022, 8(2): 189-200. [4] 田昀, 刘庆岭, 纪娜,等. 挥发性污染物二硫化碳处理技术[J]. 环境工程, 2018, 36(7): 87-92. [5] GUPTA A K, IBRAHIM S, Al SHOAIBI A. Advances in sulfur chemistry for treatment of acid gases[J]. Progress in Energy and Combustion Science, 2016, 54: 65-92. [6] 倪停亭,谢海燕,韩晋科,等. 棉浆粕化纤企业H2S和CS2排放特征及影响分析[J]. 环境工程, 2019, 37(2): 114-118. [7] 周雪鹿. 钢铁企业剩余煤气高效再利用研究[D]. 西安:西安建筑科技大学, 2017. [8] 邓彬, 鄢晓忠, 彭博,等. 高炉煤气管道腐蚀原因分析及防腐措施[J]. 冶金动力, 2018, 223(9): 13-16,21. [9] 王泽鑫, 上官炬, 刘艳霞,等. 转化吸收型氧化锌基脱硫剂脱除H2S和COS性能[J]. 精细化工, 2018, 35(12): 2024-2030,2038. [10] LI L, KING D L. H2S removal with ZnO during fuel processing for PEM fuel cell applications[J]. Catalysis Today, 2006, 116(4): 537-541. [11] 吴建华,邱信欣,刘锋,等.生物滴滤塔处理硫化氢废气[J].化工环保, 2019, 39(3): 278-282. [12] LI C X, FVRST W. Representation of CO2 and H2S solubility in aqueous MDEA solutions using an electrolyte equation of state[J]. Chemical Engineering Science, 2000, 55(15): 2975-2988. [13] 唐乐. 鲁奇低温甲醇洗工艺净化气硫化氢超标的原因分析及改造[J]. 煤化工, 2020, 48(3): 61-64. [14] ZHAI L F, HU L L, SUN M. Understanding the catalyst regeneration kinetics in the chelated iron dehydrosulfurization process: a model in terms of Fe(Ⅱ) speciation[J]. Industrial & Engineering Chemistry Research, 2015, 54(25): 6430-6437. [15] 胡徐彦. 超重力旋转填料床中络合铁脱硫工艺处理海上油田含硫伴生天然气[J]. 化工环保, 2014, 34(3): 254-256. [16] BURYAN P. Losses of an iron complex and ethylenediaminetetraacetic acid during gas desulfurization[J]. Chemical Papers, 2017, 71: 673-677. [17] 肖荣鸽, 庄琦, 王栋,等. 基于软件模拟的天然气醇胺法脱硫脱碳工艺研究进展[J]. 天然气化工(C1化学与化工), 2021, 46(4): 21-26. [18] SUN M, SONG W, ZHZI L F, et al. Effective sulfur and energy recovery from hydrogen sulfide through incorporating an air-cathode fuel cell into chelated-iron process[J]. Journal of Hazardous Materials, 2013, 263: 643-649. [19] DEMMINK J F, BEENACKER A. Oxidation of ferrous nitrilotriacetic acid with oxygen: a model for oxygen mass transfer parallel to reaction kinetics[J]. Industrial & Engineering Chemistry Research, 1997, 36(6): 1989-2005. [20] DESHMUKH G M, SHETE A, PAWAR D M. Oxidative absorption of hydrogen sulfide using an iron-chelate based process: chelate degradation[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(3): 432-436. [21] FRARE L M, VIEIRA M G A, SILVA M G C, et al. Hydrogen sulfide removal from biogas using Fe/EDTA solution: gas/liquid contacting and sulfur formation[J]. Environmental Progress & Sustainable Energy, 2010, 29(1): 34-41. [22] ZHANG J, XIAO K, LIU Z W, et al. Large-scale membrane bioreactors for industrial wastewater treatment in China: technical and economic features, driving forces, and perspectives[J]. Engineering, 2021, 7(6): 868-880. [23] 王亚军. 络合铁吸收硫化氢的反应动力学研究[D]. 北京:中国石油大学, 2018. [24] 向言, 俞英, 黄海燕. 络合铁法湿式脱硫再生反应动力学[J]. 石油与天然气化工, 2019, 48(3): 1-7. [25] 齐丽. 基础物性估算方法评价研究[D]. 青岛:青岛科技大学, 2018. [26] 周超. 化工物性估算系统研究与开发[D]. 青岛:青岛科技大学, 2022. [27] 陈煜泉. 络合铁湿式氧化硫化氢的工艺及动力学[D]. 杭州: 浙江工业大学, 2017. [28] NOUR EL-DIEN F A. Preparation and characterization of iron-DI-and poly-carboxylatepyrocatechol and pyrogallol mixed ligands chelates[J]. Spectroscopy Letters, 1999, 32(3): 407-419. [29] CRAMER S D. The solubility of oxygen in brines from 0 to 300 C[J]. Industrial & Engineering Chemistry Process Design and Development, 1980, 19(2): 300-305.
点击查看大图
计量
- 文章访问数: 226
- HTML全文浏览量: 62
- PDF下载量: 4
- 被引次数: 0