DEACTIVATION MECHANISM OF γ-Al2O3 BASED CATALYSTS FOR THE CATALYTIC HYDROLYSIS OF CARBONYL SULFIDE IN PRESENCE OF HCl
-
摘要: 随着钢铁行业超低排放的推进,实施高炉煤气脱硫迫在眉睫。高炉煤气中含硫组分主要为羰基硫(COS),常采用γ-Al2O3基催化剂将COS催化水解为H2S再进一步脱除,但是煤气中的HCl组分容易导致催化剂失活。采用浸渍法在γ-Al2O3上负载碱金属Na、K制备铝基水解催化剂,在固定床-气相色谱联用装置上,考察水解催化剂在含HCl气氛的失活机理。在120 ℃、150000 h-1空速条件下测试COS的水解效率。结果表明:Na/Al2O3和K/Al2O3催化剂的活性及抗氯性能均高于γ-Al2O3,且Na/Al2O3的抗氯性高于K/Al2O3。活性组分Na、K增加了催化剂的碱性中心,促进了COS水解反应,提高了催化剂活性;Na、K优先与HCl反应生成金属氯化物,减弱了HCl对载体组分的氯化作用,提高了催化剂的抗氯性。探明了Na/Al2O3和K/Al2O3催化剂在含HCl气氛的失活机理。HCl占据了催化剂的中强碱性中心(M—O),与碱金属活性组分反应生成了金属氯化物(M—Cl),降低了催化剂的活性。Na/Al2O3催化剂在HCl气氛中的Na流失量显著低于K/Al2O3催化剂中K的流失量,提高了Na/Al2O3催化剂的抗氯性。Abstract: With the implementation of ultra-low emissions in the iron and steel industry, applying blast furnace gas desulfurization technology is very urgent. The sulfur-containing component in blast furnace gas mainly is carbonyl sulfide (COS), and the catalytic hydrolysis method on the γ-Al2O3-based catalyst is usually selected to generate H2S and then further removed. However, the hydrolysis catalyst is easily deactivated in the presence of HCl from the blast furnace gas. In this work, the γ-Al2O3-based catalyst was prepared by the impregnation method supported with alkali metals, Na or K, as an active component. The effect of HCl on the hydrolysis activity and deactivation mechanism of the catalyst was investigated through the combined platform of a fixed-bed reactor and gas chromatography. The hydrolysis efficiency of COS was tested at 120 ℃, gas hourly space velocity (GHSV) of 150000 h-1. The results showed that hydrolysis efficiency and chlorine resistance on catalysts Na/Al2O3 and K/Al2O3 were higher than that on γ-Al2O3, and the chlorine resistance on Na/Al2O3 was higher than that on K/Al2O3. The active components, Na and K increased the content of alkaline centers of the catalyst, promoted the COS hydrolysis reaction and improved the catalyst activity. The active component Na or K preferentially reacts with HCl to form metal chloride, weakens the chlorination effect of HCl on the support components and improves the chlorine resistance of the catalyst. The deactivation mechanism of Na/Al2O3 and K/Al2O3 catalysts in the presence of HCl was investigated. HCl occupied the medium-strong alkaline center (M—O) of the catalysts and reacted with the active components of alkali metals to form metal chloride (M—Cl), and then reduced the catalyst activity. The loss of Na in Na/Al2O3 in the presence of HCl was significantly lower than K in K/Al2O3, which improved the chlorine resistance of Na/Al2O3 catalyst.
-
[1] World Steel in Figures 2023[EB/OL] https://worldsteel.org/steel-topics/statistics/world-steel-in-figures-2023/. [2] 郭玉华.高炉煤气净化提质利用技术现状及未来发展趋势[J].钢铁研究学报, 2020, 32(7): 525-531. [3] 王斌,林玉婷,李玉然,等.高炉煤气羰基硫催化水解过程影响因素[J].洁净煤技术, 2021, 27(5): 233-238. [4] CAO R, NING P, WANG X Q, et al. Low-temperature hydrolysis of carbonyl sulfide in blast furnace gas using Al2O3-based catalysts with high oxidation resistance[J]. Fuel, 2021,310: 122295. [5] 刘艳敏,辛渊,李保良,等.氯元素对高炉煤气管道的腐蚀与预防[J].天津冶金,2022(5):8-10,14. [6] 程正霖,朱晓华,李鹏飞.高炉生产过程中氯的来源、迁移转化及影响[J].环境工程,2021,39(4):86-91. [7] 李雯博,史连军,王梦,等.合成气制甲醇CuZnAl催化剂失活因素研究[J].天然气化工(C1化学与化工),2020,45(5):31-38. [8] 李春虎,郭汉贤,谈世韶.碱改性γ-Al2O3催化剂表面碱强度分布与COS水解活性的研究[J].分子催化,1994(4):305-312. [9] YAO X J, GAO F, DONG L. The application of incorporation model in γ-Al2O3 supported single and dual metal oxide catalysts: a review[J]. Chin J Catal, 2013,34: 1975-1985. [10] LI C M, ZHAO S Y, YAO X L, et al. The catalytic mechanism of intercalated chlorine anions as active basic sites in MgAl-layered double hydroxide for carbonyl sulfide hydrolysis[J]. Environmental Science and Pollution Research, 2022, 29(7):10605-10616. [11] CHANG F Y, CHEN J C, WEY M Y. Effects of oxygen and hydrogen chloride on NO removal efficiency by Rh/Al2O3 and Rh-Na/Al2O3 catalysts[J]. Applied Catalysis A: General, 2009, 359(1/2): 88-95. [12] ZHAO S Z, YI H H, TANG X L, et al. Calcined ZnNiAl hydrotalcite-like compounds as bifunctional catalysts for carbonyl sulfide removal[J]. Catalysis Today, 2019, 327: 161-167. [13] YI H H, ZHAO S Z, TANG X L, et al. Influence of calcination temperature on the hydrolysis of carbonyl sulfide over hydrotalcite-derived Zn-Ni-Al catalyst[J]. Catalysis Communications, 2011, 12(15): 1492-1495. [14] ZHAO S Z, YI H H, TANG X L, et al. Low temperature hydrolysis of carbonyl sulfide using Zn-Al hydrotalcite-derived catalysts[J]. Chemical Engineering Journal, 2013, 226: 161-165. [15] KIM S, GUPTA N K, BAE J, et al. Fabrication of coral-like Mn2O3/Fe2O3 nanocomposite or room temperature removal of hydrogen sulfide[J]. Journal of Environmental Chemical Engineering, 2021, 9(3): 105216. [16] GUPTA N K, BAE J, KIM K S. Metal organic framework derived NaCoxOy for room temperature hydrogen sulfide removal[J]. Scientific Reports, 2021, 11(1): 14740. [17] MENG W, WANG X, DAI Q, et al. Catalytic combustion of chlorobenzene over Mn-Ce/Al2O3 catalyst promoted by Mg[J]. Catalysis Communications, 2010, 11(12):1022-1025. [18] WANG Q, LIN F, ZHOU J, et al. Effect of HCl and o-DCBz on NH3-SCR of NO over MnOx/TiO2 and MnOx-CeO2/TiO2 catalysts[J]. Applied Catalysis A: General, 2020, 605: 117801. [19] LIN F, WANG Q L, HUANG X L, et al. Investigation of chlorine-poisoning mechanism of MnOx/TiO2 and MnOx-CeO2/TiO2 catalysts during o-DCBz catalytic decomposition: experiment and first-principles calculation[J]. Journal of Environmental Management,2021: 298. [20] 李凯. COS、CS2水解催化剂的开发及机理研究[D].昆明:昆明理工大学,2013. 期刊类型引用(7)
1. 胡绵好. 基于恢复成本法的水资源核算及对GDP的修正——以江西省为例. 环境保护与循环经济. 2023(01): 23-28+43 . 百度学术
2. 陈洁,施懿轩. 企业排污权交易定价研究. 人民珠江. 2023(09): 15-22 . 百度学术
3. 刘珊,廖磊,曹磊,李炫妮,董小林. 基于经济损失函数法的城市水环境污染损失分析. 安全与环境学报. 2022(01): 378-385 . 百度学术
4. 赵明浩. 会计计量属性在生态资产价值评估中的应用. 中国农业会计. 2022(10): 83-85 . 百度学术
5. 蒋昀辰,黄贤金,徐晓晔. 排水权交易定价方法及案例研究——以秦淮河流域为例. 长江流域资源与环境. 2021(06): 1308-1316 . 百度学术
6. 孙付华,杜星宇,沈菊琴. 基于公平偏好的排水权交易定价的非对称信息讨价还价模型. 资源与产业. 2020(02): 79-88 . 百度学术
7. 刘叶叶,毛德华,宋平,廖小红,刘春腊. 基于污染损失和逐级协商的生态补偿量化研究——以湘江流域为例. 生态科学. 2020(04): 193-199 . 百度学术
其他类型引用(5)
-

计量
- 文章访问数: 143
- HTML全文浏览量: 9
- PDF下载量: 3
- 被引次数: 12