EFFECT OF FLY ASH INCORPORATION ON HYDRATION MECHANISM AND HEAVY METAL SOLIDIFICATION/STABILIZATION EFFECT ON SLAG-BASED BACKFILLFING CEMENTITIOUS MATERIALS
-
摘要: 采用飞灰协同冶金固体废物(高炉矿渣、钢渣以及脱硫石膏)制备飞灰-矿渣基胶凝材料代替水泥作为采空区的回填材料,并探究了飞灰掺入量对胶凝体系水化机理及重金属稳定化效果的影响。结果表明:胶凝体系飞灰掺入量较少时(10%),会抑制体系早期(3 d)水化产物的生成,降低固化体的抗压强度;飞灰的碱激发作用会在一定程度上促进水化产物钙矾石的生成,对养护结束(28 d)时固化体的抗压强度提升具有促进作用;当胶凝体系飞灰掺入量较高时(25%),会严重抑制胶凝体系水化进程,但其产品抗压强度仍高于矿区采空区对胶凝材料的要求。另一方面,飞灰-矿渣基胶凝体系对飞灰中重金属的稳定化效果良好,除了飞灰掺入量为25%处理组的Zn浸出浓度接近水泥胶砂(GB/T 30810—2014)标准限制外,其他处理组(飞灰添加量为0%~20%)重金属浸出量均满足标准限制。因此,在掺入量合适的情况下,以飞灰作为矿区回填胶凝材料是一种理想的飞灰建材资源化方法。Abstract: In this study, fly ash-slag-based cementitious materials were prepared from fly ash co-metallurgical solid wastes (blast furnace slag, steel slag, and desulfurization gypsum) instead of cement, as backfilling materials for the mining area, and the effect of fly ash incorporation on the hydration mechanism and heavy metal stabilization effect of the cementitious system was investigated. The results showed that a low amount of fly ash (10%) in the cementitious system would inhibit the generation of hydration products in the early stage (within 3 days) of the system and reduce the compressive strength of the cured body; the alkali excitation effect of fly ash would promote the generation of hydration products, calcium alumina to a certain extent, with a facilitating effect on the compressive strength of the cured body at the end of maintenance (the 28 th day); high amount of fly ash in the cementing system (25%) would seriously inhibit the hydration process of the cementing system, but the compressive strength of the product was still higher than the requirements of the cementing material for mining area. On the other hand, the fly ash-slag-based cementitious system stabilized the heavy metals in the fly ash well, and the leaching of heavy metals in all other treatment groups (with fly ash addition of 0%~20%) satisfied the standard limits, except for the Zn in the treatment group with fly ash admixture of 25%, which was close to the China national standard limit of cementitious sand (GB/T 30810—2014). Therefore, using fly ash as mine backfilling cementitious material is an ideal method,under the appropriate admixture amount.
-
[1] 龙於洋, 濮锴, 沈东升, 等. 基于文献计量学的生活垃圾焚烧飞灰资源化利用研究现状及发展趋势分析[J]. 安全与环境学报, 2022:1-6. [2] 张喆, 邹良栋, 王永康, 等. 固化/稳定化飞灰在酸性环境中重金属浸出行为研究[J]. 环境卫生工程, 2022,30(5):72-82. [3] 罗国鹏, 张凯, 王进进, 等. 垃圾焚烧炉二恶英排放的控制策略及催化塔的记忆效应[J]. 环境工程学报, 2022,16(7):2241-2248. [4] 黄俊宾, 陈芳. 生活垃圾焚烧飞灰资源化利用研究[J]. 广州化工, 2022,50(20):163-165. [5] 肖俊炜. 水泥窑协同处置垃圾焚烧飞灰的技术途径探究[J]. 节能与环保, 2022(8):82-83. [6] 李欢, 杨佳, 魏秀珍, 等. 氯氧镁水泥对生活垃圾焚烧飞灰固化作用及影响因素研究[J]. 能源环境保护, 2022,36(6):38-46. [7] ZHANG S Q, SHI T Y, NI W, et al. The mechanism of hydrating and solidifying green mine fill materials using circulating fluidized bed fly ash-slag-based agent[J]. Journal of Hazardous Materials, 2021,415. [8] LI J, ZHANG S, WANG Q, et al. Feasibility of using fly ash-slag-based binder for mine backfilling and its associated leaching risks[J]. Journal of Hazardous Materials, 2020,400(prepublish). [9] XU C, NI W, LI K, et al. Hydration mechanism and orthogonal optimisation of mix proportion for steel slag-slag-based clinker-free prefabricated concrete[J]. Construction and Building Materials, 2019,228. [10] SHI H, KAN L. Characteristics of Municipal Solid Wastes Incineration (mswi) Fly Ash-cement Matrices and Effect of Mineral Admixtures on Composite System[J]. Construction and Building Materials, 2009,23(6). [11] 郭利杰, 张雷, 李文臣. 有色冶金渣制备胶凝材料研究现状与展望[J]. 黄金科学技术, 2020,28(5):621-636. [12] LIU J, HU L, TANG L, et al. Utilisation of municipal solid waste incinerator (MSWI) fly ash with metakaolin for preparation of alkali-activated cementitious material[J]. Journal of Hazardous Materials, 2021,402. [13] YANYING B, WEICHAO G, XIAOLIANG W, et al. Utilization of municipal solid waste incineration fly ash with red mud-carbide slag for eco-friendly geopolymer preparation[J]. Journal of Cleaner Production, 2022,340. [14] 马保国, 柯凯, 李相国, 等. 不同重金属离子对硅酸盐水泥熟料烧成的影响[J]. 中国水泥, 2007(12):64-65. [15] WANG X, NI W, LI J, et al. Carbonation of steel slag and gypsum for building materials and associated reaction mechanisms[J]. Cement and Concrete Research, 2019,125(C). [16] LIU X, ZHAO X, YIN H, et al. Intermediate-calcium based cementitious materials prepared by MSWI fly ash and other solid wastes: hydration characteristics and heavy metals solidification behavior[J]. Journal of Hazardous Materials, 2018,349. [17] CHEN Y, LIU P, YU Z. Study on degradation of macro performances and micro structure of concrete attacked by sulfate under artificial simulated environment[J]. Construction and Building Materials, 2020,260. [18] WANG X, NI W, JIN R, et al. Formation of Friedel's salt using steel slag and potash mine brine water[J]. Construction and Building Materials, 2019,220. [19] ZHANG Y, ZHANG S, NI W, et al. Immobilisation of high-arsenic-containing tailings by using metallurgical slag-cementing materials[J]. Chemosphere, 2019,223:117-123. [20] 王昕, 刘晶, 汪澜, 等. C—S—H凝胶对Pb(Ⅱ)的吸附固化作用[J]. 硅酸盐通报, 2012,31(5):1039-1043. [21] 王昕, 颜碧兰, 汪澜, 等. 不同钙硅比C—S—H对多种重金属离子的俘获及其稳定性[J]. 硅酸盐通报, 2012,31(6):1356-1362. [22] ZHISHENG R, LU W, HAO W, et al. Solidification/stabilization of lead-contaminated soils by phosphogypsum slag-based cementitious materials[J]. The Science of the Total Environment, 2022,857(P3). [23] YIERFAN M, KANG G, BING C, et al. Recycling of heavy metal contaminated river sludge into unfired green bricks: strength, water resistance, and heavy metals leaching behavior: a laboratory simulation study[J]. Journal of Cleaner Production, 2022,342.
点击查看大图
计量
- 文章访问数: 85
- HTML全文浏览量: 9
- PDF下载量: 8
- 被引次数: 0