APPLICATION PRACTICE OF A SMART DUST CONTROL SYSTEM FOR IRON AND STEEL PRODUCTION PROCESS
-
摘要: 面向钢铁生产过程和非工艺除尘环保治理需求,实现了基于工业互联网架构的环保治理智能平台,并结合组织和生产管理特点,构建了生产现场实时监控和生产调度两级管理系统。该平台可实时采集钢铁生产过程和非工艺除尘环节工况、运行参数和能耗数据,对其进行大数据分析和人工智能处理,实现生产现场管理、能耗分析和优化、过程监控和基于智能图像识别的安防预警功能。该平台采用安全加密技术,支持通过办公计算机和移动终端实时获取生产信息和智能告警。该平台达到GB/T 39117—2020智能制造能力成熟度三级以上。实测结果表明,该平台能缩短故障检测排除时间15.29%,总吨钢效率提升37.84%,吨钢年度电力消耗降低11.43%。Abstract: For the iron and steel production process, a smart dust control platform combining the characteristics of organization and production management is realized. Based on industrial internet, a two-level management system of production field monitoring and production scheduling is established in the platform. This platform collects data from the iron and steel production process, the working conditions of the non-craft dust removal field, running parameters, and energy consumption. Then the data are analyzed and processed with the method of artificial intelligence to realize the functions of production field management, energy consumption analytics and optimization, process monitoring, and safe warning based on smart image recognition. Safe encryption technology is applied in the platform to admit office personal computers and mobile terminals to get access to the real-time producing and smart warning information from the platform. The platform complies with the third grade of the China National Standard of Intelligent Manufacturing Capability Maturity (GB/T 39117—2020). The real application of the platform shows that the platform can reduce the accident checking and repairing time by 15.29%, improve the total producing efficiency per ton of steel by 37.84%, and decrease the electrical energy consumption per ton of steel by 11.43%.
-
[1] 张笛,曹宏斌,赵赫,等.工业污染控制发展历程及趋势分析[J].环境工程,2022,40(1):1-7,206. [2] 中国钢铁工业协会.2022中国钢铁工业年鉴[M].北京:中国钢铁工业年鉴社,2022:56-58. [3] 王新东,田京雷,宋程远. 大型钢铁企业绿色制造创新实践与展望[J].钢铁,2018,53(2):1-9. [4] 王广,张宏强,苏步新,等. 我国钢铁工业碳排放现状与降碳展望[J].化工矿物与加工,2021,50(12):55-64. [5] 于勇,朱廷钰,刘霄龙.中国钢铁行业重点工序烟气超低排放技术进展[J].钢铁,2019,54(9):1-11. [6] 国家发展改革委、科技部、工业和信息化部,等.关于"十四五"大宗固体废弃物综合利用的指导意见[J].再生资源与循环经济,2021,14(4):1-3. [7] 王新东,侯长江,田京雷.钢铁行业烟气多污染物协同控制技术应用实践[J].过程工程学报,2020,20(9):997-1007. [8] 何坤,王立.中国钢铁工业生产能耗的发展与现状[J].中国冶金,2021,31(9):26-35. [9] 刘国华.钢铁企业电除尘器技术发展历程及运行现状分析[C]//2014年全国冶金能源环保生产技术会论文集,2014:470-472. [10] 环境保护部. 钢铁工业除尘工程技术规范:HJ 435—2008[S].北京:中国环境科学出版社,2008:9-18. [11] 吕孟天予.高炉出铁场环保除尘设计[J].天津冶金,2021,9(3):64-67. [12] 吕晓鹏, 李雪锋, 李文新,等. 钢铁转炉除尘风机变频节能改造[J].冶金能源,2012,31(1):4. [13] 于恒.钢铁企业除尘灰综合利用现状与展望[J].矿产保护与利用,2021(4):164-171. [14] 伍颖, 姚俊, 彭波. 浅议钢铁冶金除尘灰的处理工艺[J].低碳世界,2019,9(12):30-31. [15] 卢山, 潘智斌, 周永新. 高炉除尘灰处理技术[J].广西节能,2010(1):33-36. [16] 高婴劢.工业互联网促进制造业价值链持续提升[N].中国证券报,2015-08-17(A13). [17] 周济.走向新一代智能制造[J].中国科技产业,2018(6):20. [18] 周济.引领新一轮工业革命[N].中国信息化周报,2018-10-15(7). [19] 周济,周艳红,王柏村,等.面向新一代智能制造的人-信息-物理系统(HCPS)[J].Engineering,2019,5(4):71. [20] 刘玠.人工智能推动冶金工业变革[J].钢铁,2020,55(6):1. [21] 王万良,张兆娟,高楠,等.基于人工智能技术的大数据分析方法研究进展[J].计算机集成制造系统,2019,25(5):529. [22] 李瑞琪,韦莎,程雨航,等.人工智能技术在智能制造中的典型应用场景与标准体系研究[J].中国工程科学,2018(4):112. [23] 李新创.新时代钢铁工业高质量发展之路[J].钢铁,2019,54(1):1. [24] 邓万里.智能制造视野下钢铁企业能源管控系统展望[J].钢铁,2020,55(11):1. [25] 王春梅,周东东,徐科,等.综述钢铁行业智能制造的相关技术[J].中国冶金,2018,28(7):1. [26] 姚林,王军生.钢铁流程工业智能制造的目标与实现[J].中国冶金,2020,30(7):1. [27] 刘文仲.中国钢铁工业智能制造现状及思考[J].中国冶金,2020,30(6):1. [28] 颉建新,张福明.钢铁制造流程智能制造与智能设计[J].中国冶金,2019,29(2):1. [29] 王晓连,迟京东.智能制造促进钢铁工业转型升级[J].冶金自动化,2018,42(3):1. [30] 李新创.智能制造助力钢铁工业转型升级[J].中国冶金,2017,27(2):1.
点击查看大图
计量
- 文章访问数: 87
- HTML全文浏览量: 13
- PDF下载量: 5
- 被引次数: 0