CHARACTERISTICS OF HEAVY METAL ELEMENTS POLLUTION AND HEALTH RISK ASSESSMENT OF ATMOSPHERIC DUST-FALL IN TANGSHAN
-
摘要: 唐山作为重工业城市,其大气污染状况极易对当地及京津冀地区生态环境造成影响。设置23个采样点采集唐山大气降尘。结果表明:降尘中As、Cd、Pb、Cr、Ni、Cu和Zn的平均含量分别为12.89,1.90,158.06,88.00,33.13,65.67,933.65 mg/kg。其中Pb、Ni和Cr高值区主要分布在唐山主城区北部、中部和东南区域,As主要分布在北部和东南区域,Cd主要分布在西北部和中部区域,Zn主要分布在东北部区域,Cu高值区分布则较为分散。富集因子分析显示:As、Cr和Ni为轻度富集,Cu为中度富集,Pb为较高富集,Cd和Zn为严重富集。地积累指数评价结果表明:Ni、Cr和As元素污染程度为无污染到中度污染,Cu为中度污染,Pb为中度污染到强污染,Cd和Zn为强污染。对于儿童群体和成人群体,大气降尘中重金属元素的非致癌总风险(HI)顺序分别为Pb>As>Cr>Zn>Cd>Ni>Cu和 Pb>As>Cr>Cd>Zn>Ni>Cu;3种暴露途径均表现为手-口摄食途径风险最高,呼吸途径风险居中,皮肤接触途径风险最低。其中,儿童群体非致癌总风险(HI)为1.63,易对儿童身体健康造成危害;成人群体HI为0.223,表明其对成人健康影响较小。对Ni、Cr、As和Cd元素致癌风险进行计算,其值均在10-9~10-7,表明这4种元素通过呼吸途径不具有致癌风险。源解析结果表明,研究区Cr、Pb、Cu、Cd和Ni可能为交通和土壤的混合源,Zn可能主要来自工业源,As可能主要来自土壤和工业的混合源。Abstract: Tangshan as a heavy industry city, its air pollution is easy to affect the local and Beijing-Tianjin-Hebei region ecological environment.In order to study the pollution degree of heavy metals in atmospheric dust-fall in Tangshan and its health risk to the human body, 23 sampling points were set up to collect dust. The results showed that the average contents of As, Cd, Pb, Cr, Ni, Cu and Zn in the atmospheric dust were 12.89, 1.90, 158.06, 88.00, 33.13, 65.67 and 933.65 mg/kg, respectively. The spatial distribution characteristics showed that the high-value areas of Pb, Ni and Cr were mainly distributed in the northern, central and southeastern parts of Tangshan, As is mainly distributed in the northern and southeastern parts, Cd is mainly distributed in the northwestern and central parts, Zn is mainly distributed in the northeastern parts, and the high-value areas of Cu are scattered. Enrichment factor analysis showed that As, Cr and Ni were mildly enriched, Cu was moderately enriched, Pb was highly enriched, and Cd and Zn were severely enriched. According to the evaluation results of the geo-accumulation index, the pollution degree of Ni, Cr and As elements ranged from no pollution to moderate pollution. The pollution degree of Cu element was moderate. The pollution degree of Pb element was moderate pollution to strong pollution. Cd and Zn elements were in a highly polluted level. For children and adults, the total non-carcinogenic risk (HI) of heavy metals in atmospheric dust was in the sequence of Pb>As>Cr>Zn>Cd>Ni>Cu, and Pb>As>Cr>Cd>Zn>Ni>Cu, respectively. The three exposure routes showed the highest risk of hand-mouth ingestion, medium risk of respiratory, and the lowest risk of skin. The total non-carcinogenic risk (HI) of children was 1.63, which was easy to cause harm to children's health. The total non-carcinogenic risk (HI) in the adult population was 0.223, indicating a small impact on adult health. The carcinogenic risk of Ni, Cr, As and Cd elements were calculated, and their values were all between 10-7 and 10-9, but not more than 10-6 and 10-4, indicating that these four elements had no carcinogenic risk through the respiratory pathway. The source analysis results indicate that Cr, Pb, Cu, Cd, and Ni in the study area may come from the mixed sources of transportation and soil, Zn may mainly come from industrial sources, and As may mainly come from mixed sources of soil and industry.
-
[1] 王振波, 梁龙武, 林雄斌, 等. 京津冀城市群空气污染的模式总结与治理效果评估[J]. 环境科学, 2017, 38(10): 4005-4014. [2] 王振波, 梁龙武, 方创琳, 等. 京津冀特大城市群生态安全格局时空演变特征及其影响因素[J]. 生态学报, 2018, 38(12): 4132-4144. [3] 方创琳, 周成虎, 顾朝林, 等. 特大城市群地区城镇化与生态环境交互耦合效应解析的理论框架及技术路径[J]. 地理学报, 2016, 71(4): 531-550. [4] 刘海猛, 方创琳, 黄解军, 等. 京津冀城市群大气污染的时空特征与影响因素解析[J]. 地理学报, 2018, 73(1): 177-191. [5] 宫密秘, 吴建军. 唐山市PM2.5污染来源解析与环境容量研究[J]. 环境科学导刊, 2022, 41(6): 38-43,96. [6] 刘彬. 唐山市大气污染防治现状及问题治理[J]. 区域治理, 2019(34): 57-59. [7] 陈莹, 赵剑强, 汤丹娜, 等. 西安市大气降尘重金属污染特征与生态风险[J]. 干旱区资源与环境, 2017, 31(6):154-159. [8] 戴青云, 贺前锋, 刘代欢,等. 大气沉降重金属污染特征及生态风险研究进展[J]. 环境科学与技术, 2018, 41(3):56-64. [9] 向勇, 易田芳, 邓聂. 湿法消解-电感耦合等离子体质谱(ICP-MS)法测定大气降尘中7种重金属[J]. 中国无机分析化学, 2023, 13(3): 216-220. [10] 樊瑾, 王融融, 李诗瑶, 等. 工矿区不同类型生物结皮对大气降尘重金属的富集规律及其影响因子[J].生态学报, 2023,43(8):3168-3180. [11] 石震宇, 卢俊平, 刘廷玺, 等. 典型生态脆弱区水库周边大气降尘重金属风险评价及APCS-MLR模型溯源[J]. 环境科学,2023,44(10):5344-5355. [12] 钟雅琪, 杨新明, 吴众然, 等. 济南市大气降尘中Co、Ni、Cu和As赋存形态分布特征及其风险评估[J].环境污染与防治, 2022, 44(11): 1503-1508. [13] 樊馨瑶. 西安市大气降尘中砷、汞和镉的赋存形态和健康风险[D]. 西安:陕西师范大学, 2021. [14] 高雯媛, 邹霖, 邢宏霖, 等. 邵阳市城区大气降尘中的Pb、Cd的污染及环境风险评价[J]. 环境污染与防治, 2015, 37(6):34-40. [15] 方文稳, 张丽, 叶生霞,等. 安庆市降尘重金属的污染评价与健康风险评价[J]. 中国环境科学, 2015, 35(12):3795-3803. [16] MA W C, TAI L Y, QIAO Z, et al. Contamination source apportionment and health risk assessment of heavy metals in soil around municipal solid waste incinerator: a case study in North China[J]. The Science of the Total Environment, 2018, 631/632: 348-357. [17] PING L I, XUE S Y, WANG S L, et al. Pollution evaluation and health risk assessment of heavy metals from atmospheric deposition in Lanzhou[J]. Environmental Science, 2014, 35(3):1021-1028. [18] 杨新明, 钟雅琪, 李国锋, 等. 典型工业城市大气降尘中重金属分布特征及其来源解析:以济南市为例[J]. 环境化学, 2022, 41(1): 94-103. [19] 黄文, 王胜利. 兰州市采暖期和非采暖期大气降尘重金属的分布特征及来源[J]. 环境科学, 2022, 43(2): 597-607. [20] 熊秋林. 北京降尘元素特征与重金属污染成因分析[J]. 测绘学报, 2021, 50(2): 281. [21] 张克磊, 朱建雯, 魏疆. 乌鲁木齐夏季大气降尘中重金属的分布特征[J]. 环境工程, 2014, 32(2): 98-101,106. [22] YAN Y, CHI H F, LIU J R, et al. Provenance and bioaccessibility of rare earth elements in atmospheric particles in areas impacted by the optoelectronic industry[J]. Environmental Pollution, 2020, 263: 114349. [23] 陈智贤, 栾文楼. 唐山市区近地表降尘重金属的分布特征及成因[J]. 物探与化探, 2011, 35(6): 833-836. [24] 史国媛. 唐山近海表层沉积物重金属分布特征及迁移规律[D]. 唐山:河北联合大学, 2012. [25] 崔邢涛, 刘伟. 唐山城市近地表灰尘重金属含量及环境质量评价[J]. 现代地质, 2017, 31(1): 184-190. [26] 韦炳干, 虞江萍, 曹志强, 等. 唐山市设施菜地土壤重金属累积与有效态含量的影响特征[J]. 环境化学, 2021, 40(9): 2649-2657. [27] 纪婷婷. 大气降尘中重金属污染源解析研究[J]. 化工管理, 2019(1): 86-87. [28] 张兆永, 吉力力·阿不都外力, 姜逢清. 艾比湖流域大气降尘重金属的污染和健康风险[J]. 中国环境科学, 2015, 35(6): 1645-1653. [29] 占长林, 张家泉, 郑敬茹,等. 鄂东典型工业城市大气PM10中元素浓度特征和来源分析[J]. 环境科学, 2017, 38(11): 4463-4468. [30] 胡恭任, 戚红璐, 于瑞莲, 等. 大气降尘中重金属形态分析及生态风险评价[J]. 有色金属, 2011, 63(2): 286-291. [31] 杨忠平, 赵剑剑, 曹明哲,等. 长春市城区土壤重金属健康风险评价[J]. 土壤通报, 2015, 46(2):502-508. [32] U. S. Environmental Protection Agency. Supplemental Guidance for Developing soil Screening Levels for Super Fund Sites[M]. Washington, DC: Office of Solid Waste and Emergency Response, 2002. [33] 姜林, 王岩, 王军玲, 等. 场地环境评价导则:DB11/T 656—2009[S].北京:中国环境科学出版社,2004. [34] 王宗爽, 武婷, 段小丽, 等. 环境健康风险评价中我国居民呼吸速率暴露参数研究[J]. 环境科学研究, 2009, 22(10):1171-1175. [35] U. S. Environmental Protection Agency. Soil Screening Guidance: Technical Background Document[M]. Washington, DC: Office of Solid Waste and Emergency Response, 1996. [36] 王喆, 刘少卿, 陈晓民, 等. 健康风险评价中中国人皮肤暴露面积的估算[J]. 安全与环境学报, 2008, 8(4): 152-156. [37] 张春荣, 吴正龙, 姚春卉, 等. 青岛市区大气降尘重金属对人体健康风险的评价[J]. 环境科学, 2014, 35(7): 2736-2741. [38] 薛粟尹, 李萍, 王胜利, 等. 干旱区绿洲土壤氟污染生态风险评估研究[J]. 环境科学, 2014, 35(3): 1075-1080. [39] 崔邢涛, 栾文楼, 牛彦斌, 等. 唐山城市土壤重金属污染及潜在生态危害评价[J]. 中国地质, 2011, 38(5): 1379-1386. [40] 崔邢涛, 栾文楼, 李随民, 等.石家庄市大气降尘重金属元素来源分析[J]. 中国地质, 2012, 39(4): 1108-1115. [41] 刘杰, 高敏, 梁俊宁, 等. 陕西省某工业园区春季大气降尘重金属污染特征及评价[J]. 环境科学研究, 2019, 32(7): 1195-1203. [42] 田春晖, 杨若杼, 古丽扎尔依力哈木, 等. 南京市大气降尘重金属污染水平及风险评价[J]. 环境科学, 2018, 39(7): 3118-3125. [43] 邢小茹, 薛生国, 张乃英, 等. 鞍山市大气尘和金属元素沉降通量及污染特征[J]. 中国环境监测, 2010, 26(2): 11-15. [44] GAILEY F A, LLOYD O L L. Grass and surface soils as monitors of atmospheric metal pollution in central Scotland[J]. Water, Air, and Soil Pollution, 1985, 24(1): 1-18. [45] 王明仕, 刘艳萍, 曹景丽,等. 焦作市采暖期大气降尘重金属的分布特征和健康风险评估[J]. 地球与环境, 2018, 46(1):59-65. [46] 梅凡民, 徐朝友, 周亮. 西安市公园大气降尘中Cu、Pb、Zn、Ni、Cd的化学形态特征及其生物有效性[J]. 环境化学, 2011, 30(7): 1284-1290. [47] BOURLIVA A, CHRISTOPHORIDIS C, PAPADOPOULOU L, et al. Characterization, heavy metal content and health risk assessment of urban road dusts from the historic center of the city of Thessaloniki, Greece[J]. Environmental Geochemistry and Health, 2017, 39(3): 611-634. [48] 吴红璇, 史常青, 张艳, 等. 乌海市煤矿区及周边春季降尘污染特征及来源分析[J]. 环境科学, 2020, 41(3): 1167-1175. [49] 臧飞, 李萍, 薛粟尹, 等. 兰州市大气降尘重金属的分布特征及来源研究[J]. 兰州大学学报(自然科学版), 2016, 52(3): 357-363. [50] 汤奇峰, 杨忠芳, 张本仁,等. 成都经济区As等元素大气干湿沉降通量及来源研[J]. 地学前缘, 2007, 14(3):213-222.
点击查看大图
计量
- 文章访问数: 109
- HTML全文浏览量: 12
- PDF下载量: 6
- 被引次数: 0