中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤气化渣资源化利用技术研究进展

傅文煜 孙文强 王连勇

傅文煜, 孙文强, 王连勇. 煤气化渣资源化利用技术研究进展[J]. 环境工程, 2023, 41(12): 319-328. doi: 10.13205/j.hjgc.202312040
引用本文: 傅文煜, 孙文强, 王连勇. 煤气化渣资源化利用技术研究进展[J]. 环境工程, 2023, 41(12): 319-328. doi: 10.13205/j.hjgc.202312040
FU Wenyu, SUN Wenqiang, WANG Lianyong. ADVANCES IN RESOURCE UTILIZATION TECHNOLOGIES FOR COAL GASIFICATION SLAG[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 319-328. doi: 10.13205/j.hjgc.202312040
Citation: FU Wenyu, SUN Wenqiang, WANG Lianyong. ADVANCES IN RESOURCE UTILIZATION TECHNOLOGIES FOR COAL GASIFICATION SLAG[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 319-328. doi: 10.13205/j.hjgc.202312040

煤气化渣资源化利用技术研究进展

doi: 10.13205/j.hjgc.202312040
基金项目: 

沈阳市自然科学基金专项 (22315613)

详细信息
    作者简介:

    傅文煜(1996-),男,硕士研究生,主要研究方向为固体废物资源化利用。fuwenyu@stumail.neu.edu.cn

    通讯作者:

    孙文强(1986-),男,博士,副教授,主要研究方向为系统节能。sunwq@mail.neu.edu.cn

ADVANCES IN RESOURCE UTILIZATION TECHNOLOGIES FOR COAL GASIFICATION SLAG

  • 摘要: 目前煤气化渣尚未得到有效利用,多采用填埋或堆积处理。随着煤气化渣堆存量的增加,其伴随的资源浪费及环境污染问题越来越突出。因此,迫切需要寻找高效合理的气化渣利用方式。介绍了煤气化渣的形成过程,综述了煤气化渣在建筑材料、土壤改良、吸附材料、残炭利用和催化剂载体等方面的研究现状。其中,建筑材料按照胶凝材料、砖墙材料和陶粒3个部分展开综述。对吸附材料的综述包括废水处理和CO2吸附。残炭利用介绍了用于掺烧和催化石墨化及吸收电磁波等。最后提出了一种综合利用思路:残炭与灰渣分开利用,残炭可作为活性炭和电磁波吸收剂原料,灰渣的利用根据浸出液中重金属含量来综合确认:若毒性超标可通过免烧法制陶粒,毒性不超标则可根据其组分选择制沸石或用作胶凝材料添加剂。
  • [1] 张文,林长喜,彭永臻. 现代煤化工废水近零排放技术集成与优化建议[J]. 环境工程, 2021, 39(11): 41-45.
    [2] 赵永彬,吴辉,蔡晓亮,等. 煤气化残渣的基本特性研究[J]. 洁净煤技术, 2015, 21(3): 110-113

    ,74.
    [3] LIU X D, JIN Z W, JING Y H, et al. Review of the characteristics and graded utilisation of coal gasification slag[J]. Chinese Journal of Chemical Engineering, 2021, 35: 92-106.
    [4] 告别"埋埋埋"气化细渣有望资源化利用. 中国科学[N].2022-07-13,第3版.
    [5] 宋瑞领,蓝天. 气流床煤气化炉渣特性及综合利用研究进展[J]. 煤炭科学技术, 2021, 49(4): 227-236.
    [6] WANG Y F, TANG Y G, LI R Q, et al. Measurements of the leachability of potentially hazardous trace elements from solid coal gasification wastes in China[J]. Science of the Total Environment, 2021, 759: 143463.
    [7] 陈冠益,刘馨仪,孙昱楠,等. 锅炉与工业窑炉协同处置城市固废及腐蚀风险研究现状[J]. 环境工程, 2022, 40(11): 1-12.
    [8] 潘建,段真,朱德庆,等. 不锈钢尘泥球团煤基直接还原动力学[J]. 钢铁研究学报, 2022,34(10): 1067-1077.
    [9] 曲江山,张建波,孙志刚,等. 煤气化渣综合利用研究进展[J]. 洁净煤技术, 2020, 26(1): 184-193.
    [10] 宁永安,段一航,高宁博,等. 煤气化渣组分回收与利用技术研究进展[J]. 洁净煤技术, 2020, 26(增刊1): 14-19.
    [11] 王钰,茹立军. 煤化工生产技术[M]. 重庆:重庆大学出版社,2017: 52.
    [12] 房晓晴,刘书含,孙文强. 高炉煤气管网水力建模及调度策略[J]. 东北大学学报(自然科学版), 2023, 44(1): 69-75.
    [13] QU J S, ZHANG J B, LI H Q, et al. A high value utilization process for coal gasification slag: Preparation of high modulus sodium silicate by mechano-chemical synergistic activation[J]. Science of the Total Environment, 2021, 801: 149761.
    [14] YUAN N, ZHAO A J, HU Z K, et al. Preparation and application of porous materials from coal gasification slag for wastewater treatment: a review[J]. Chemosphere, 2022, 287: 132227.
    [15] 刘艳丽,李强,陈占飞,等. 煤气化渣特性分析、研究进展与展望[J]. 煤炭科学技术: 1-9.
    [16] 王冀,孔令学,白进,等. 煤气化灰渣中残炭对灰渣流动性影响的研究进展[J]. 洁净煤技术, 2021, 27(1): 181-192.
    [17] 杨宏泉,孙志刚,曲江山,等. 中石化典型地区气化炉渣基础物性分析研究[J]. 洁净煤技术, 2021, 27(3): 101-108.
    [18] LI Z Z, ZHANG Y Y, ZHAO H Y, et al. Structure characteristics and composition of hydration products of coal gasification slag mixed cement and lime[J]. Construction and Building Materials, 2019, 213: 265-274.
    [19] LUO F, JIANG Y S, WEI C D. Potential of decarbonized coal gasification residues as the mineral admixture of cement-based material[J]. Construction and Building Materials, 2021, 269: 121259.
    [20] 李彦君,阎蕊珍,王建成,等. 利用脱碳气化渣制备水泥基复合材料[J]. 洁净煤技术, 2022, 28(2): 160-168.
    [21] WU F, LI H, YANG K. Effects of mechanical activation on physical and chemical characteristics of coal-gasification slag[J]. Coatings, 2021, 11(8): 902.
    [22] FU B, CHENG Z Y, WANG D Z, et al. Investigation on the utilization of coal gasification slag in Portland cement: reaction kinetics and microstructure[J]. Construction and Building Materials, 2022, 323: 126587.
    [23] 章丽萍,温晓东,史云天,等. 煤间接液化灰渣制备免烧砖研究[J]. 中国矿业大学学报, 2015, 44(2): 354-358.
    [24] 张成,裴超. 煤气化渣生产蒸压砖的技术研究[J]. 砖瓦世界, 2019(10): 49-52.
    [25] 云正,于鹏超,尹洪峰. 气化炉渣对铁尾矿烧结墙体材料性能的影响[J]. 金属矿山, 2010(11): 183-186.
    [26] 冯银平,尹洪峰,袁蝴蝶,等. 利用气化炉渣制备轻质隔热墙体材料的研究[J]. 硅酸盐通报, 2014, 33(3): 497-501

    ,510.
    [27] 张凯,刘舒豪,张日新,等. 免烧法煤气化粗渣制备陶粒工艺及其性能研究[J]. 煤炭科学技术, 2018, 46(10): 222-227.
    [28] ZHAO S W, YAO L Y, HE H B, et al. Preparation and environmental toxicity of non-sintered ceramsite using coal gasification coarse slag[J]. Archives of Environmental Protection, 2019, 45(2):84-90.
    [29] 王攀奇. 轻质陶粒的缩聚烧结机理及其在混凝土应用[D]. 西安:长安大学, 2020.
    [30] SHAH A N, TANVEER M, SHAHZAD B, et al. Soil compaction effects on soil health and cropproductivity: an overview[J]. Environmental Science and Pollution Research, 2017, 24(11): 10056-10067.
    [31] ZHU D D, MIAO S D, XUE B, et al. Effect of coal gasification fine slag on the physicochemical properties of soil[J]. Water Air Soil Pollut, 2019, 230: 155.
    [32] 尹春艳,赵举,刘虎,等. 水煤浆气化渣对毛乌素沙地土壤改良与菊芋生长的促进效应研究[J]. 土壤通报, 2021, 52(6): 1411-1417.
    [33] 相微微,李夏隆,严加坤,等. 榆林煤气化渣重金属生物有效性评价[J]. 农业环境科学学报, 2021, 40(5): 1097-1105.
    [34] DUAN L Y, HU X D, SUN D S, et al. Rapid removal of low concentrations of mercury from wastewater using coal gasification slag[J]. Korean Journal of Chemical Engineering, 2020, 37(7): 1166-1173.
    [35] 刘大锐,朱丹丹. 煤气化渣对磷酸根的吸附与解吸性能研究[J]. 无机盐工业, 2021, 53(2): 84-87

    ,104.
    [36] KUMAR P, SUDHA S, CHAND S, et al. Phosphate removal from aqueous solution using coir-pith activated carbon[J]. Separation Science and Technology, 2010, 45(10): 1463-1470.
    [37] 程晓莹,武成利,吴祥,等. 气化灰渣合成13X分子筛及其表征[J]. 煤炭转化, 2021, 44(3): 76-82.
    [38] SHU R, QIAO Q X, GUO F Q, et al. Controlled design of Na-P1 zeolite/porous carbon composites from coal gasification fine slag for high-performance adsorbent[J]. Environmental Research, 2023, 217: 114912.
    [39] AI W D, LI Y T, ZHANG X J, et al. The preparation and evaluation mechanism of mesoporous spherical silica/porous carbon-filled polypropylene composites obtained from coal gasification fine slag[J]. Environmental Science and Pollution Research, 2022, 29(59): 88894-88907.
    [40] 刘硕. 煤气化细渣制备介孔材料及净水剂研究[D]. 长春:吉林大学, 2019: 27.
    [41] 亢玉红,冯博洪,李珍妮,等. 煤气化废渣基活性炭吸附对二甲苯动力学与热力学研究[J]. 离子交换与吸附, 2020, 36(1): 49-57.
    [42] 陈思思,唐兴颖,任鹏炜,等. 催化剂在生物质水热碳化过程中应用的研究进展[J]. 环境工程,2013,41(4):195-204.
    [43] JI W X, ZHANG S Y, ZHAO P D, et al. Green synthesis method and application of NaP zeolite prepared by coal gasification coarse slag from Ningdong, China[J]. Applied Sciences, 2020, 10(8): 2694.
    [44] JI W X, FENG N, ZHAO P D, et al. Synthesis of single-phase zeolite A by coal gasification fine slag from Ningdong and its application as a high-efficiency adsorbent for Cu2+ and Pb2+ in simulated waste water[J]. Chem Engineering, 2020, 4(4): 65.
    [45] YUAN N, TAN K Q, ZHANG X L, et al. Synthesis and adsorption performance of ultra-low silica-to-alumina ratio and hierarchical porous ZSM-5 zeolites prepared from coal gasification fine slag[J]. Chemosphere, 2022, 303: 134839.
    [46] WU Y H, XUE K, MA Q L, et al. Removal of hazardous crystal violet dye by low-cost P-type zeolite/carbon composite obtained from in situ conversion of coal gasification fine slag[J]. Microporous and Mesoporous Materials, 2021, 312: 110742.
    [47] CHAI Z, LV P, BAI Y H, et al. Low-cost Y-type zeolite/carbon porous composite from coal gasification fine slag and its application in the phenol removal from wastewater: fabrication, characterization, equilibrium, and kinetic studies[J]. RSC Advances, 2022, 12(11): 6715-6724.
    [48] MA X Y, LI Y X, XU D F, et al. Simultaneous adsorption of ammonia and phosphate using ferric sulfate modified carbon/zeolite composite from coal gasification slag[J]. Journal of Environmental Management, 2022, 305: 114404.
    [49] ZHU D D, ZUO J, JIANG Y S, et al. Carbon-silica mesoporous composite in situ prepared from coal gasification fine slag by acid leaching method and its application in nitrate removing[J]. Science of the Total Environment, 2020, 707: 136102.
    [50] LIU S, WEI J L, CHEN X T, et al. Low-cost route for preparing carbon-silica composite mesoporous material from coal gasification slag: synthesis, characterization and application in purifying dye wastewater[J]. Arabian Journal for Science and Engineering, 2020, 45(6): 4647-4657.
    [51] GU Y Y, QIAO X C. A carbon silica composite prepared from water slurry coal gasification slag[J]. Microporous and Mesoporous Materials, 2019, 276: 303-307.
    [52] LIU S, CHEN X T, AI W D, et al. A new method to prepare mesoporous silica from coal gasification fine slag and its application in methylene blue adsorption[J]. Journal of Cleaner Production, 2019, 212: 1062-1071.
    [53] 温龙英. 低温固相法活化煤气化细渣及其综合利用制备二氧化硅介孔材料[D]. 呼和浩特:内蒙古大学, 2015: 46.
    [54] LI C C, QIAO X C, YU J G. Large surface area MCM-41 prepared from acid leaching residue of coal gasification slag[J]. Materials Letters, 2016, 167: 246-249.
    [55] XU Y T, CHAI X L. Characterization of coal gasification slag-based activated carbon and its potential application in lead removal[J]. Environmental Technology, 2018, 39(3): 382-391.
    [56] KANG Y H, WEI X Y, LIU G H, et al. CO2-hierarchical activated carbon prepared from coal gasification residue: adsorption equilibrium, isotherm, kinetic and thermodynamic studies for methylene blue removal[J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1694-1700.
    [57] 刘冬雪,胡俊阳,冯启明,等. 煤气化炉渣浮选及其精炭制备活性炭的研究[J]. 煤炭转化, 2018,41(5): 73-80.
    [58] MIAO Z K, GUO Z K, QIU G F, et al. Synthesis of activated carbon from high-ash coal gasification fine slag and their application to CO2 capture[J]. Journal of CO2 Utilization, 2021, 50: 101585.
    [59] MIAO Z K, XU J, CHEN L Q, et al. Hierarchical porous composites derived from coal gasification fine slag for CO2 capture: role of slag particles in the composites[J]. Fuel, 2022, 309: 122334.
    [60] MIAO Z K, WU J J, QIU G F, et al. Solving two industrial waste issues simultaneously: Coal gasification fine slag-based hierarchical porous composite with enhanced CO2 adsorption performance[J]. Science of The Total Environment, 2022, 821: 153347.
    [61] MIAO Z K, QIU G F, ZHAO X, et al. Influence of pre-oxidization on the characterizations of coal gasification fine slag-derived activated carbons for CO2 capture[J]. Journal of CO2 Utilization, 2021, 54: 101754.
    [62] SRIPADA P, KHAN M M, RAMASAMY S, et al. Influence of coal properties on the CO2 adsorption capacity of coal gasification residues[J]. Energy Science & Engineering, 2018, 6(4): 321-335.
    [63] 靖宇,韦力,王运东. 吸附法捕集CO2吸附剂的研究进展[J]. 化工进展, 2011, 30(增刊2): 133-138.
    [64] ZHANG J P, ZUO J, AI W D, et al. Preparation of mesoporous coal-gasification fine slag adsorbent via amine modification and applications in CO2 capture[J]. Applied Surface Science, 2021, 537: 147938.
    [65] LI X Y, WANG Z Q, FENG R. CO2 capture on aminosilane functionalized alumina-extracted residue of catalytic gasification coal ash[J]. Energy, 2021, 221: 119642.
    [66] 史达,张建波,杨晨年,等. 煤气化灰渣脱碳技术研究进展[J]. 洁净煤技术, 2020, 26(6): 1-10.
    [67] DAI G F, ZHENG S J, WANG X B, et al. Combustibility analysis of high-carbon fine slags from an entrained flow gasifier[J]. Journal of Environmental Management, 2020, 271: 111009.
    [68] ZHANG Y X, JIA W K, WANG R M, et al. Investigation of the characteristics of catalysis synergy during co-combustion for coal gasification fine slag with bituminous coal and bamboo residue[J]. Catalysts, 2021, 11(10): 1152.
    [69] 刘奥灏,张磊,张贺,等. 燃煤锅炉掺烧气化灰渣试验研究[J]. 热力发电, 2020, 49(4): 19-24.
    [70] LI J W, FAN S B, ZHANG X Y, et al. Investigation on co-combustion of coal gasification fine ash and raw coal blends: thermal conversion, gas pollutant emission and kinetic analyses[J]. Energy, 2022, 246: 123368.
    [71] GUO Y, GUO F H, ZHOU L, et al. Investigation on co-combustion of coal gasification fine slag residual carbon and sawdust char blends: physiochemical properties, combustion characteristic and kinetic behavior[J]. Fuel, 2021, 292: 120387.
    [72] ZHANG Y C, LI H X, GAO S T, et al. A study on the chemical state of carbon present in fine ash from gasification[J]. Asia-Pacific Journal of Chemical Engineering, 2019, 14(4): e2336.
    [73] 许慎启. 煤气化反应动力学及渣中残碳反应活性研究[D]. 上海: 华东理工大学, 2011.
    [74] ZHAO X, LIU K J, GUO F H, et al. Catalytic graphitization of residual carbon from gasification fine slag with ferric chloride as catalyst[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: 128142.
    [75] 刘坤基. 气化细渣中残碳催化石墨化研究[D]. 徐州:中国矿业大学, 2019.
    [76] 陈雪刚,叶瑛,程继鹏. 电磁波吸收材料的研究进展[J]. 无机材料学报, 2011, 26(5): 449-457.
    [77] HE J, GAO S T, ZHANG Y C, et al. Nanoferric tetroxide decorated N-doped residual carbon from entrained-flow coal gasification fine slag for enhancing the electromagnetic wave absorption capacity[J]. Journal of Alloys and Compounds, 2021, 874: 159878.
    [78] HE J, GAO S T, ZHANG Y C, et al. N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption[J]. Journal of Materials Science & Technology, 2022, 104: 98-108.
    [79] GAO S T, CHEN L W, ZHANG Y C, et al. Fe nanoparticles decorated in residual carbon from coal gasification fine slag as an ultra-thin wideband microwave absorber[J]. Composites Science and Technology, 2021, 213: 108921.
    [80] ZHANG Y C, GAO S T, HE J, et al. PANI-wrapped high-graphitized residual carbon hybrid with boosted electromagnetic wave absorption performance[J]. Synthetic Metals, 2022, 287: 117077.
    [81] HAN F, GAO Y C, HUO Q H, et al. Characteristics of Vanadium-based coal gasification slag and the NH3-selective catalytic reduction of NO[J]. Catalysts, 2018, 8(8): 327.
    [82] 焦玉荣,张栩瑞,张亚,等. 煤气化渣负载Ni@SiO2/TiO2材料的制备及其催化性能研究[J]. 功能材料, 2022, 53(2): 2156-2161.
    [83] 焦玉荣,张妍,韩志萍,等. 改性煤气化渣负载ZnO复合材料制备及其光催化性质[J]. 化工科技, 2022, 30(1): 9-14.
  • 加载中
计量
  • 文章访问数:  354
  • HTML全文浏览量:  23
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-06
  • 网络出版日期:  2024-03-08

目录

    /

    返回文章
    返回