ADVANCES IN RESOURCE UTILIZATION TECHNOLOGIES FOR COAL GASIFICATION SLAG
-
摘要: 目前煤气化渣尚未得到有效利用,多采用填埋或堆积处理。随着煤气化渣堆存量的增加,其伴随的资源浪费及环境污染问题越来越突出。因此,迫切需要寻找高效合理的气化渣利用方式。介绍了煤气化渣的形成过程,综述了煤气化渣在建筑材料、土壤改良、吸附材料、残炭利用和催化剂载体等方面的研究现状。其中,建筑材料按照胶凝材料、砖墙材料和陶粒3个部分展开综述。对吸附材料的综述包括废水处理和CO2吸附。残炭利用介绍了用于掺烧和催化石墨化及吸收电磁波等。最后提出了一种综合利用思路:残炭与灰渣分开利用,残炭可作为活性炭和电磁波吸收剂原料,灰渣的利用根据浸出液中重金属含量来综合确认:若毒性超标可通过免烧法制陶粒,毒性不超标则可根据其组分选择制沸石或用作胶凝材料添加剂。Abstract: At present, coal gasification slag (CGS) has not been effectively utilized, and it is still mainly piled or landfilled. With the increase in CGS accumulation, the problems of resource waste and environmental pollution become more and more prominent. Therefore, it is urgent to find an efficient and reasonable utilization method for CGS. The formation process of CGS is introduced. The status quo of CGS applied in building materials, soil improvement, adsorption materials, utilization of residual carbon and catalyst carrier are reviewed. Among them, building materials are combed into three parts: cementitious materials, brick wall materials and ceramsite. The review of adsorption materials includes wastewater treatment and CO2 adsorption. Utilization of residual carbon includes blending burning, catalytic graphitization, and electromagnetic wave absorption. Finally, a proposal for comprehensive CGS utilization is put forward. The residual carbon can be used separately from the ash residue. The residual carbon can be used as the raw material of activated carbon and electromagnetic wave absorber. The utilization of ash can be divided into two categories based on the heavy metal content in the leaching solution: if the toxicity exceeds the standard, the ceramic particles can be produced by the non-burning method; if the toxicity does not exceed the standard, they can be used to make zeolite or as an additive for cementitious materials according to their composition.
-
[1] 张文,林长喜,彭永臻. 现代煤化工废水近零排放技术集成与优化建议[J]. 环境工程, 2021, 39(11): 41-45. [2] 赵永彬,吴辉,蔡晓亮,等. 煤气化残渣的基本特性研究[J]. 洁净煤技术, 2015, 21(3): 110-113,74. [3] LIU X D, JIN Z W, JING Y H, et al. Review of the characteristics and graded utilisation of coal gasification slag[J]. Chinese Journal of Chemical Engineering, 2021, 35: 92-106. [4] 告别"埋埋埋"气化细渣有望资源化利用. 中国科学[N].2022-07-13,第3版. [5] 宋瑞领,蓝天. 气流床煤气化炉渣特性及综合利用研究进展[J]. 煤炭科学技术, 2021, 49(4): 227-236. [6] WANG Y F, TANG Y G, LI R Q, et al. Measurements of the leachability of potentially hazardous trace elements from solid coal gasification wastes in China[J]. Science of the Total Environment, 2021, 759: 143463. [7] 陈冠益,刘馨仪,孙昱楠,等. 锅炉与工业窑炉协同处置城市固废及腐蚀风险研究现状[J]. 环境工程, 2022, 40(11): 1-12. [8] 潘建,段真,朱德庆,等. 不锈钢尘泥球团煤基直接还原动力学[J]. 钢铁研究学报, 2022,34(10): 1067-1077. [9] 曲江山,张建波,孙志刚,等. 煤气化渣综合利用研究进展[J]. 洁净煤技术, 2020, 26(1): 184-193. [10] 宁永安,段一航,高宁博,等. 煤气化渣组分回收与利用技术研究进展[J]. 洁净煤技术, 2020, 26(增刊1): 14-19. [11] 王钰,茹立军. 煤化工生产技术[M]. 重庆:重庆大学出版社,2017: 52. [12] 房晓晴,刘书含,孙文强. 高炉煤气管网水力建模及调度策略[J]. 东北大学学报(自然科学版), 2023, 44(1): 69-75. [13] QU J S, ZHANG J B, LI H Q, et al. A high value utilization process for coal gasification slag: Preparation of high modulus sodium silicate by mechano-chemical synergistic activation[J]. Science of the Total Environment, 2021, 801: 149761. [14] YUAN N, ZHAO A J, HU Z K, et al. Preparation and application of porous materials from coal gasification slag for wastewater treatment: a review[J]. Chemosphere, 2022, 287: 132227. [15] 刘艳丽,李强,陈占飞,等. 煤气化渣特性分析、研究进展与展望[J]. 煤炭科学技术: 1-9. [16] 王冀,孔令学,白进,等. 煤气化灰渣中残炭对灰渣流动性影响的研究进展[J]. 洁净煤技术, 2021, 27(1): 181-192. [17] 杨宏泉,孙志刚,曲江山,等. 中石化典型地区气化炉渣基础物性分析研究[J]. 洁净煤技术, 2021, 27(3): 101-108. [18] LI Z Z, ZHANG Y Y, ZHAO H Y, et al. Structure characteristics and composition of hydration products of coal gasification slag mixed cement and lime[J]. Construction and Building Materials, 2019, 213: 265-274. [19] LUO F, JIANG Y S, WEI C D. Potential of decarbonized coal gasification residues as the mineral admixture of cement-based material[J]. Construction and Building Materials, 2021, 269: 121259. [20] 李彦君,阎蕊珍,王建成,等. 利用脱碳气化渣制备水泥基复合材料[J]. 洁净煤技术, 2022, 28(2): 160-168. [21] WU F, LI H, YANG K. Effects of mechanical activation on physical and chemical characteristics of coal-gasification slag[J]. Coatings, 2021, 11(8): 902. [22] FU B, CHENG Z Y, WANG D Z, et al. Investigation on the utilization of coal gasification slag in Portland cement: reaction kinetics and microstructure[J]. Construction and Building Materials, 2022, 323: 126587. [23] 章丽萍,温晓东,史云天,等. 煤间接液化灰渣制备免烧砖研究[J]. 中国矿业大学学报, 2015, 44(2): 354-358. [24] 张成,裴超. 煤气化渣生产蒸压砖的技术研究[J]. 砖瓦世界, 2019(10): 49-52. [25] 云正,于鹏超,尹洪峰. 气化炉渣对铁尾矿烧结墙体材料性能的影响[J]. 金属矿山, 2010(11): 183-186. [26] 冯银平,尹洪峰,袁蝴蝶,等. 利用气化炉渣制备轻质隔热墙体材料的研究[J]. 硅酸盐通报, 2014, 33(3): 497-501,510. [27] 张凯,刘舒豪,张日新,等. 免烧法煤气化粗渣制备陶粒工艺及其性能研究[J]. 煤炭科学技术, 2018, 46(10): 222-227. [28] ZHAO S W, YAO L Y, HE H B, et al. Preparation and environmental toxicity of non-sintered ceramsite using coal gasification coarse slag[J]. Archives of Environmental Protection, 2019, 45(2):84-90. [29] 王攀奇. 轻质陶粒的缩聚烧结机理及其在混凝土应用[D]. 西安:长安大学, 2020. [30] SHAH A N, TANVEER M, SHAHZAD B, et al. Soil compaction effects on soil health and cropproductivity: an overview[J]. Environmental Science and Pollution Research, 2017, 24(11): 10056-10067. [31] ZHU D D, MIAO S D, XUE B, et al. Effect of coal gasification fine slag on the physicochemical properties of soil[J]. Water Air Soil Pollut, 2019, 230: 155. [32] 尹春艳,赵举,刘虎,等. 水煤浆气化渣对毛乌素沙地土壤改良与菊芋生长的促进效应研究[J]. 土壤通报, 2021, 52(6): 1411-1417. [33] 相微微,李夏隆,严加坤,等. 榆林煤气化渣重金属生物有效性评价[J]. 农业环境科学学报, 2021, 40(5): 1097-1105. [34] DUAN L Y, HU X D, SUN D S, et al. Rapid removal of low concentrations of mercury from wastewater using coal gasification slag[J]. Korean Journal of Chemical Engineering, 2020, 37(7): 1166-1173. [35] 刘大锐,朱丹丹. 煤气化渣对磷酸根的吸附与解吸性能研究[J]. 无机盐工业, 2021, 53(2): 84-87,104. [36] KUMAR P, SUDHA S, CHAND S, et al. Phosphate removal from aqueous solution using coir-pith activated carbon[J]. Separation Science and Technology, 2010, 45(10): 1463-1470. [37] 程晓莹,武成利,吴祥,等. 气化灰渣合成13X分子筛及其表征[J]. 煤炭转化, 2021, 44(3): 76-82. [38] SHU R, QIAO Q X, GUO F Q, et al. Controlled design of Na-P1 zeolite/porous carbon composites from coal gasification fine slag for high-performance adsorbent[J]. Environmental Research, 2023, 217: 114912. [39] AI W D, LI Y T, ZHANG X J, et al. The preparation and evaluation mechanism of mesoporous spherical silica/porous carbon-filled polypropylene composites obtained from coal gasification fine slag[J]. Environmental Science and Pollution Research, 2022, 29(59): 88894-88907. [40] 刘硕. 煤气化细渣制备介孔材料及净水剂研究[D]. 长春:吉林大学, 2019: 27. [41] 亢玉红,冯博洪,李珍妮,等. 煤气化废渣基活性炭吸附对二甲苯动力学与热力学研究[J]. 离子交换与吸附, 2020, 36(1): 49-57. [42] 陈思思,唐兴颖,任鹏炜,等. 催化剂在生物质水热碳化过程中应用的研究进展[J]. 环境工程,2013,41(4):195-204. [43] JI W X, ZHANG S Y, ZHAO P D, et al. Green synthesis method and application of NaP zeolite prepared by coal gasification coarse slag from Ningdong, China[J]. Applied Sciences, 2020, 10(8): 2694. [44] JI W X, FENG N, ZHAO P D, et al. Synthesis of single-phase zeolite A by coal gasification fine slag from Ningdong and its application as a high-efficiency adsorbent for Cu2+ and Pb2+ in simulated waste water[J]. Chem Engineering, 2020, 4(4): 65. [45] YUAN N, TAN K Q, ZHANG X L, et al. Synthesis and adsorption performance of ultra-low silica-to-alumina ratio and hierarchical porous ZSM-5 zeolites prepared from coal gasification fine slag[J]. Chemosphere, 2022, 303: 134839. [46] WU Y H, XUE K, MA Q L, et al. Removal of hazardous crystal violet dye by low-cost P-type zeolite/carbon composite obtained from in situ conversion of coal gasification fine slag[J]. Microporous and Mesoporous Materials, 2021, 312: 110742. [47] CHAI Z, LV P, BAI Y H, et al. Low-cost Y-type zeolite/carbon porous composite from coal gasification fine slag and its application in the phenol removal from wastewater: fabrication, characterization, equilibrium, and kinetic studies[J]. RSC Advances, 2022, 12(11): 6715-6724. [48] MA X Y, LI Y X, XU D F, et al. Simultaneous adsorption of ammonia and phosphate using ferric sulfate modified carbon/zeolite composite from coal gasification slag[J]. Journal of Environmental Management, 2022, 305: 114404. [49] ZHU D D, ZUO J, JIANG Y S, et al. Carbon-silica mesoporous composite in situ prepared from coal gasification fine slag by acid leaching method and its application in nitrate removing[J]. Science of the Total Environment, 2020, 707: 136102. [50] LIU S, WEI J L, CHEN X T, et al. Low-cost route for preparing carbon-silica composite mesoporous material from coal gasification slag: synthesis, characterization and application in purifying dye wastewater[J]. Arabian Journal for Science and Engineering, 2020, 45(6): 4647-4657. [51] GU Y Y, QIAO X C. A carbon silica composite prepared from water slurry coal gasification slag[J]. Microporous and Mesoporous Materials, 2019, 276: 303-307. [52] LIU S, CHEN X T, AI W D, et al. A new method to prepare mesoporous silica from coal gasification fine slag and its application in methylene blue adsorption[J]. Journal of Cleaner Production, 2019, 212: 1062-1071. [53] 温龙英. 低温固相法活化煤气化细渣及其综合利用制备二氧化硅介孔材料[D]. 呼和浩特:内蒙古大学, 2015: 46. [54] LI C C, QIAO X C, YU J G. Large surface area MCM-41 prepared from acid leaching residue of coal gasification slag[J]. Materials Letters, 2016, 167: 246-249. [55] XU Y T, CHAI X L. Characterization of coal gasification slag-based activated carbon and its potential application in lead removal[J]. Environmental Technology, 2018, 39(3): 382-391. [56] KANG Y H, WEI X Y, LIU G H, et al. CO2-hierarchical activated carbon prepared from coal gasification residue: adsorption equilibrium, isotherm, kinetic and thermodynamic studies for methylene blue removal[J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1694-1700. [57] 刘冬雪,胡俊阳,冯启明,等. 煤气化炉渣浮选及其精炭制备活性炭的研究[J]. 煤炭转化, 2018,41(5): 73-80. [58] MIAO Z K, GUO Z K, QIU G F, et al. Synthesis of activated carbon from high-ash coal gasification fine slag and their application to CO2 capture[J]. Journal of CO2 Utilization, 2021, 50: 101585. [59] MIAO Z K, XU J, CHEN L Q, et al. Hierarchical porous composites derived from coal gasification fine slag for CO2 capture: role of slag particles in the composites[J]. Fuel, 2022, 309: 122334. [60] MIAO Z K, WU J J, QIU G F, et al. Solving two industrial waste issues simultaneously: Coal gasification fine slag-based hierarchical porous composite with enhanced CO2 adsorption performance[J]. Science of The Total Environment, 2022, 821: 153347. [61] MIAO Z K, QIU G F, ZHAO X, et al. Influence of pre-oxidization on the characterizations of coal gasification fine slag-derived activated carbons for CO2 capture[J]. Journal of CO2 Utilization, 2021, 54: 101754. [62] SRIPADA P, KHAN M M, RAMASAMY S, et al. Influence of coal properties on the CO2 adsorption capacity of coal gasification residues[J]. Energy Science & Engineering, 2018, 6(4): 321-335. [63] 靖宇,韦力,王运东. 吸附法捕集CO2吸附剂的研究进展[J]. 化工进展, 2011, 30(增刊2): 133-138. [64] ZHANG J P, ZUO J, AI W D, et al. Preparation of mesoporous coal-gasification fine slag adsorbent via amine modification and applications in CO2 capture[J]. Applied Surface Science, 2021, 537: 147938. [65] LI X Y, WANG Z Q, FENG R. CO2 capture on aminosilane functionalized alumina-extracted residue of catalytic gasification coal ash[J]. Energy, 2021, 221: 119642. [66] 史达,张建波,杨晨年,等. 煤气化灰渣脱碳技术研究进展[J]. 洁净煤技术, 2020, 26(6): 1-10. [67] DAI G F, ZHENG S J, WANG X B, et al. Combustibility analysis of high-carbon fine slags from an entrained flow gasifier[J]. Journal of Environmental Management, 2020, 271: 111009. [68] ZHANG Y X, JIA W K, WANG R M, et al. Investigation of the characteristics of catalysis synergy during co-combustion for coal gasification fine slag with bituminous coal and bamboo residue[J]. Catalysts, 2021, 11(10): 1152. [69] 刘奥灏,张磊,张贺,等. 燃煤锅炉掺烧气化灰渣试验研究[J]. 热力发电, 2020, 49(4): 19-24. [70] LI J W, FAN S B, ZHANG X Y, et al. Investigation on co-combustion of coal gasification fine ash and raw coal blends: thermal conversion, gas pollutant emission and kinetic analyses[J]. Energy, 2022, 246: 123368. [71] GUO Y, GUO F H, ZHOU L, et al. Investigation on co-combustion of coal gasification fine slag residual carbon and sawdust char blends: physiochemical properties, combustion characteristic and kinetic behavior[J]. Fuel, 2021, 292: 120387. [72] ZHANG Y C, LI H X, GAO S T, et al. A study on the chemical state of carbon present in fine ash from gasification[J]. Asia-Pacific Journal of Chemical Engineering, 2019, 14(4): e2336. [73] 许慎启. 煤气化反应动力学及渣中残碳反应活性研究[D]. 上海: 华东理工大学, 2011. [74] ZHAO X, LIU K J, GUO F H, et al. Catalytic graphitization of residual carbon from gasification fine slag with ferric chloride as catalyst[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: 128142. [75] 刘坤基. 气化细渣中残碳催化石墨化研究[D]. 徐州:中国矿业大学, 2019. [76] 陈雪刚,叶瑛,程继鹏. 电磁波吸收材料的研究进展[J]. 无机材料学报, 2011, 26(5): 449-457. [77] HE J, GAO S T, ZHANG Y C, et al. Nanoferric tetroxide decorated N-doped residual carbon from entrained-flow coal gasification fine slag for enhancing the electromagnetic wave absorption capacity[J]. Journal of Alloys and Compounds, 2021, 874: 159878. [78] HE J, GAO S T, ZHANG Y C, et al. N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption[J]. Journal of Materials Science & Technology, 2022, 104: 98-108. [79] GAO S T, CHEN L W, ZHANG Y C, et al. Fe nanoparticles decorated in residual carbon from coal gasification fine slag as an ultra-thin wideband microwave absorber[J]. Composites Science and Technology, 2021, 213: 108921. [80] ZHANG Y C, GAO S T, HE J, et al. PANI-wrapped high-graphitized residual carbon hybrid with boosted electromagnetic wave absorption performance[J]. Synthetic Metals, 2022, 287: 117077. [81] HAN F, GAO Y C, HUO Q H, et al. Characteristics of Vanadium-based coal gasification slag and the NH3-selective catalytic reduction of NO[J]. Catalysts, 2018, 8(8): 327. [82] 焦玉荣,张栩瑞,张亚,等. 煤气化渣负载Ni@SiO2/TiO2材料的制备及其催化性能研究[J]. 功能材料, 2022, 53(2): 2156-2161. [83] 焦玉荣,张妍,韩志萍,等. 改性煤气化渣负载ZnO复合材料制备及其光催化性质[J]. 化工科技, 2022, 30(1): 9-14.
点击查看大图
计量
- 文章访问数: 354
- HTML全文浏览量: 23
- PDF下载量: 10
- 被引次数: 0