ENVIRONMENTAL IMPACT ASSESSMENT ON FUEL GAS PRODUCTION FROM DISTILLER’S GRAINS BY ANAEROBIC DIGESTION COUPLED WITH GASIFICATION
-
摘要: 厌氧发酵-气化耦合技术是一种高效的生物质燃气化技术,具备显著的能源转化优势。为准确评估厌氧发酵程度对该耦合系统环境效益的影响,利用全生命周期分析方法,通过Gabi软件对所建立的不同厌氧发酵时间下酒糟厌氧发酵-气化耦合制备燃气模型进行环境影响评价。结果表明:厌氧发酵-气化梯度耦合反应系统基于能量流产生的环境正面影响可抵消基于物质流产生的环境负面影响,从而使系统获得正面的综合环境效益。厌氧发酵时间为8 d时系统环境影响结果最优,其环境影响潜值为-2.02×10-9。对厌氧发酵-气化耦合系统的耦合程度进行控制,可在优化系统能量收益的同时产生最有利的环境影响,从而为耦合技术的应用提供理论指导。Abstract: As an efficient conversion pathway to produce biomass fuel gas, the integrated anaerobic digestion and gasification process shows significant advantages in energy conversion. To ascertain the effect of anaerobic digestion degree on the environmental benefits, a model of gradient-controlled anaerobic digestion and gasification integration process was built, and the distiller's grains were treated with different anaerobic digestion times. The life cycle analysis method and Gabi software were used to conduct the environmental impact assessment.Resultsshowed that the energy produced by the gradient-controlled coupled system can not only cover the drying of the biogas residue, but also achieve net energy output. And the positive environmental impacts based on energy flow can offset the negative environmental impacts based on material flow, so that the system can obtain positive comprehensive environmental impacts. The optimal total potential environmental impact of a 1000 kg distiller's grains system was-2.02×10-9 with anaerobic digestion treatment lasting for 8 days. The control of the coupling degree of anaerobic digestion and gasification process makes the coupled system optimize its net energy output and have the most favorable environmental impact, so as to provide theoretical guidance for the application of the coupled process.
-
[1] 中华人民共和国国家发展和改革委员会.2021年天然气运行简况[EB/OL].2022-02-10[2023-01-01].https://www.ndrc.gov.cn/fgsj/tjsj/jjyx/mdyqy/202202/t20220210_1314517.html?code=&state=123. [2] 国家统计局.天然气产量(亿立方米)[DS/OL].[2023-01-01].https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0E0H&sj=2021. [3] ZHANG J,QIN Y P,DUO H Q.The development trend of China’s natural gas consumption:a forecasting viewpoint based on grey forecasting model[J].Energy Reports,2021,7:4308-4324. [4] 丁怡婷.我国生物质资源年产生量约34.94亿吨[N/OL].人民日报,2021-09-29[2023-01-01].http://www.xinhuanet.com/energy/20210929/22edeac20c2249daa1944825a899962c/c.html. [5] 中国产业发展促进会生物质能产业分会,德国国际合作机构(GIZ),生态环境部环境工程评估中心,北京松杉低碳技术研究院.3060零碳生物质能发展潜力蓝皮书[R].2021. [6] LI H L,MEHMOOD D,THORIN E,et al.Biomethane production via anaerobic digestion and biomass gasification[J].Energy Procedia,2017,105:1172-1177. [7] 邵明帅,张超,吴华南,等.水热耦合厌氧消化技术处理餐厨垃圾沼渣沼液及工艺能耗分析[J].化工进展,2022,41(5):2733-2742. [8] 武宏香,赵增立,王小波,等.生物质气化制备合成天然气技术的研究进展[J].化工进展,2013,32(1):83-90,113. [9] 张德俐,王芳,易维明,等.木质纤维素生物质厌氧发酵沼渣热化学转化利用研究进展[J].农业工程学报,2021,37(21):225-236. [10] WISNIEWSKI D,GOLASZEWSKI J,BIALOWIEC,A.The pyrolysis and gasification of digestate from agricultural biogas plant[J].Archives of Environmental Protection,2015,41(3):70-75. [11] CHEN G Y,GUO X,CHENG Z J,et al.Air gasification of biogas-derived digestate in a downdraft fixed bed gasifier[J].Waste Management,2017,69:162-169. [12] CHEN G Y,GUO X,LIU F,et al.Gasification of lignocellulosic biomass pretreated by anaerobic digestion (AD) process:an experimental study[J].Fuel,2019,247:324-333. [13] GUO X,ZHANG Y B,GUO Q Q,et al.Evaluation on energetic and economic benefits of the coupling anaerobic digestion and gasification from agricultural wastes[J].Renewable Energy,2021,176:494-503. [14] 高纬迪.基于生命周期的生物质厌氧消化-气化耦合发电系统综合评价[D].天津:天津大学,2021. [15] WANG Z,LI J,YU F,et al.Comprehensive evaluation of gradient controlled anaerobic digestion and pyrolysis integration processes:a case study of Sargassum treatment[J].Bioresource Technology,2022,345. [16] 刘桐利,赵立欣,孟海波,等.秸秆能源化利用技术评价方法探究与优化[J].环境工程,2020,38(8):195-200. [17] 魏庭玉.木质纤维素类生物质转化为液体燃料的能源-环境-经济综合评价[D].杭州:浙江大学,2020. [18] 国家统计局.白酒产量[DS/OL].[2023-01-01].https://data.stats.gov.cn/easyquery.htm?cn=A01&zb=A020909&sj=202208. [19] 李倩.不同类型酒糟营养成分组成差异及瘤胃发酵特性的研究[D].雅安:四川农业大学,2017. [20] 郭祥.生物质厌氧发酵耦合热解气化试验研究与机理分析[D].天津:天津大学,2019. [21] SHAH A,BARAL N R,MANANDHAR A.Chapter Four-Technoeconomic Analysis and Life Cycle Assessment of Bioenergy Systems[M]//Li Y,Ge X.Advances in Bioenergy,Eds.Elsevier:2016,1:189-247. [22] 刘航驿,颜蓓蓓,林法伟,等.生命周期视角下2种餐厨垃圾资源化处理方案的对比分析[J].环境工程,2021,39(9):169-175. [23] 温博婷.木质纤维素原料的酶解糖化及厌氧发酵转化机理研究[D].北京:中国农业大学,2015. [24] WANG L J,SHAHBAZI A,HANNA M A.Characterization of corn stover,distiller grains and cattle manure for thermochemical conversion[J].Biomass and Bioenergy,2011,35(1):171-178. [25] 张靖雪,李盼盼,于洋,等.基于固液分离预处理的餐厨垃圾厌氧发酵[J].中国环境科学,2022,42(3):1252-1258. [26] 李娜.农村混合废物干式厌氧发酵工艺优化及沼渣的综合利用[D].武汉:武汉理工大学,2018. [27] LI H,TAN F,KE L T,et al.Mass balances and distributions of C,N,and P in the anaerobic digestion of different substrates and relationships between products and substrates[J].Chemical Engineering Journal,2016,287:329-336. [28] 梁译文.餐厨垃圾和玉米秸秆联合厌氧发酵机理研究[D].北京:中国石油大学(北京),2017. [29] 李学尧,李靖.蓝藻厌氧消化产沼气技术研究[J].北方环境,2012,24(5):155-159. [30] 徐晨茗.餐厨垃圾厌氧发酵产甲烷过程微生物菌群变化特征[D].合肥:安徽建筑大学,2021. [31] LI J,TAO J Y,YAN B B,et al.Review of microwave-based treatments of biomass gasification tar[J].Renewable and Sustainable Energy Reviews,2021,150:111510. [32] 展新,吴文广,崔国民.生物质气化过程中热解焦油的生成及其均相转化机理[J].能源研究与信息,2019,35(3):125-133. [33] VALDERRAMA RIOS M L,GONZÁLEZ A M,LORA E E S,et al.Reduction of tar generated during biomass gasification:a review[J].Biomass and Bioenergy,2018,108:345-370. [34] 颜蓓蓓,李志宇,李健,等.生物质化学链气化氧载体的研究进展[J].化工进展,2020,39(10):3956-3965. [35] LI W W,KHALID H,ZHU Z,et al.Methane production through anaerobic digestion:participation and digestion characteristics of cellulose,hemicellulose and lignin[J].Applied Energy,2018,226:1219-1228. [36] ZHANG Z K,ZHU Z Y,SHEN B X,et al.Insights into biochar and hydrochar production and applications:a review[J].Energy,2019,171:581-598.
点击查看大图
计量
- 文章访问数: 112
- HTML全文浏览量: 25
- PDF下载量: 3
- 被引次数: 0