中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低碳背景下剩余污泥厌氧共发酵产酸研究进展

马元元 吴瑒 王朴淳 陈银广 郑雄

潘杨, 黄勇, 曹桂华, 赵应举. 基于污泥转移的SBR工艺污泥沉降性能研究[J]. 环境工程, 2012, 30(3): 42-45. doi: 10.13205/j.hjgc.201203014
引用本文: 马元元, 吴瑒, 王朴淳, 陈银广, 郑雄. 低碳背景下剩余污泥厌氧共发酵产酸研究进展[J]. 环境工程, 2024, 42(1): 102-109. doi: 10.13205/j.hjgc.202401014
MA Yuanyuan, WU Yang, WANG Puchun, CHEN Yinguang, ZHENG Xiong. RESEARCH PROGRESS ON ANAEROBIC CO-FERMENTATION OF WASTE-ACTIVATED SLUDGE TO PRODUCE ACID UNDER THE GOAL OF LOW CARBON[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 102-109. doi: 10.13205/j.hjgc.202401014
Citation: MA Yuanyuan, WU Yang, WANG Puchun, CHEN Yinguang, ZHENG Xiong. RESEARCH PROGRESS ON ANAEROBIC CO-FERMENTATION OF WASTE-ACTIVATED SLUDGE TO PRODUCE ACID UNDER THE GOAL OF LOW CARBON[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 102-109. doi: 10.13205/j.hjgc.202401014

低碳背景下剩余污泥厌氧共发酵产酸研究进展

doi: 10.13205/j.hjgc.202401014
基金项目: 

国家重点研发计划(2019YFC1906302);国家自然科学基金项目(52200171)

详细信息
    作者简介:

    马元元(2000-),女,硕士研究生,主要研究方向为城市污水/污泥处理与资源化。2230588@tongji.edu.cn

    通讯作者:

    郑雄(1985-),男,教授,主要研究方向为城市污水/污泥处理与资源化。xiongzheng@tongji.edu.cn

RESEARCH PROGRESS ON ANAEROBIC CO-FERMENTATION OF WASTE-ACTIVATED SLUDGE TO PRODUCE ACID UNDER THE GOAL OF LOW CARBON

  • 摘要: 低碳背景下,剩余污泥的资源化利用是实现污水处理厂有机固废减污降碳协同增效的重要举措。厌氧共发酵技术则是实现污泥资源化利用的最有效手段之一。通过剩余污泥与其他有机固废厌氧共发酵产生的高值产物(如挥发性脂肪酸等)可广泛应用于工业产品生产中,在实现污泥资源化利用的同时,降低了碳排放。然而,现有研究主要聚焦在剩余污泥厌氧共发酵产酸效能的探讨,在共发酵产酸的机理及优化调控手段等方面缺乏系统性的总结与分析。因此,基于以往研究,系统分析了剩余污泥与餐厨垃圾、农业废弃物等共发酵产酸效能,讨论了C/N值、pH值、温度以及污泥停留时间等工艺参数对剩余污泥厌氧共发酵过程的影响,提出了剩余污泥厌氧共发酵产酸的下游应用,并从能源与经济角度对剩余污泥厌氧共发酵技术进行了展望,以期为剩余污泥厌氧共发酵技术的低碳化应用提供参考。
  • [1] 王莉,何蓉,雷海涛.城镇污水处理厂污泥处理处置技术现状综述[J].净水技术,2022,41(11):16-21

    ,69.
    [2] 高卫民,程寒飞.我国污泥处理处置技术研究进展[J].化工矿物与加工,2023,52(1):71-79.
    [3] VÁZQUEZ-FERNÁNDEZ A,SUÁREZ-OJEDA M E,CARRERA J.Bioproduction of volatile fatty acids from wastes and wastewaters:influence of operating conditions and organic composition of the substrate[J].Journal of Environmental Chemical Engineering,2022:107917.
    [4] LI X,CHEN H,HU L F,et al.Pilot-scale waste activated sludge alkaline fermentation,fermentation liquid separation,and application of fermentation liquid to improve biological nutrient removal[J].Environmental Science & Technology,2011,45(5):1834-1839.
    [5] MONTIEL-JARILLO G,GEA T,ARTOLA A,et al.Towards PHA production from wastes:the bioconversion potential of different activated sludge and food industry wastes into VFAs through acidogenic fermentation[J].Waste and Biomass Valorization,2021,12(12):6861-6873.
    [6] FEI Q,CHANG H N,SHANG L A,et al.The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production[J].Bioresource Technology,2011,102(3):2695-2701.
    [7] FEDERICO B,GIUSEPPE S,VALENTINO F,et al.New insights in food waste,sewage sludge and green waste anaerobic fermentation for short-chain volatile fatty acids production:a review[J].Journal of Environmental Chemical Engineering,2022:108319.
    [8] PANG H L,AN L,ZHANG Y Y,et al.Divalent cation chelation enhancing carbon migration and recovery from anaerobic fermentation of waste activated sludge[J].Chemical Engineering Journal,2023:141374.
    [9] GONZALEZ A,HENDRIKS A,VAN LIER J,et al.Pre-treatments to enhance the biodegradability of waste activated sludge:elucidating the rate limiting step[J].Biotechnology Advances,2018,36(5):1434-1469.
    [10] FANG W,ZHANG X D,ZHANG P Y,et al.Overview of key operation factors and strategies for improving fermentative volatile fatty acid production and product regulation from sewage sludge[J].Journal of Environmental Sciences,2020,87:93-111.
    [11] PEREZ-ESTEBAN N,VINARDELL S,VIDAL-ANTICH C,et al.Potential of anaerobic co-fermentation in wastewater treatments plants:a review[J].Science of the Total Environment,2021:152498.
    [12] LI X,MU H,CHEN Y G,et al.Production of propionic acid-enriched volatile fatty acids from co-fermentation liquid of sewage sludge and food waste using Propionibacterium acidipropionici[J].Water Science and Technology,2013,68(9):2061-2066.
    [13] STRAZZERA G,BATTISTA F,ANDREOLLI M,et al.Influence of different household food waste fractions on volatile fatty acids production by anaerobic fermentation[J].Bioresource Technology,2021,335:125289.
    [14] DAHIYA S,SARKAR O,SWAMY Y,et al.Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen[J].Bioresource Technology,2015,182:103-113.
    [15] 李子瑜,李镇州,窦玉婷,等.异源物质对餐厨垃圾厌氧消化效能的影响及调控策略[J].环境工程,2023,41(6):222-232.
    [16] DILLEY R J,MORRISON W A.Vascularisation to improve translational potential of tissue engineering systems for cardiac repair[J].The International Journal of Biochemistry & Cell Biology,2014,56:38-46.
    [17] VIDAL-ANTICH C,PEREZ-ESTEBAN N,ASTALS S,et al.Assessing the potential of waste activated sludge and food waste co-fermentation for carboxylic acids production[J].Science of the Total Environment,2021,757:143763.
    [18] MA H J,LIU H,ZHANG L H,et al.Novel insight into the relationship between organic substrate composition and volatile fatty acids distribution in acidogenic co-fermentation[J].Biotechnology for Biofuels,2017,10(1):1-15.
    [19] VIDAL-ANTICH C,PECES M,PEREZ-ESTEBAN N,et al.Impact of food waste composition on acidogenic co-fermentation with waste activated sludge[J].Science of the Total Environment,2022,849:157920.
    [20] BEVILACQUA R,REGUEIRA A,MAURICIO-IGLESIAS M,et al.Protein composition determines the preferential consumption of amino acids during anaerobic mixed-culture fermentation[J].Water Research,2020,183:115958.
    [21] PECES M,POZO G,KOCH K,et al.Exploring the potential of co-fermenting sewage sludge and lipids in a resource recovery scenario[J].Bioresource Technology,2020,300:122561.
    [22] LI R H,LI X Y.Recovery of phosphorus and volatile fatty acids from wastewater and food waste with an iron-flocculation sequencing batch reactor and acidogenic co-fermentation[J].Bioresource Technology,2017,245:615-624.
    [23] FENG L Y,YAN Y Y,CHEN Y G.Co-fermentation of waste activated sludge with food waste for short-chain fatty acids production:effect of pH at ambient temperature[J].Frontiers of Environmental Science & Engineering in China,2011,5:623-632.
    [24] CHEN Y G,LUO J Y,YAN Y Y,et al.Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells[J].Applied Energy,2013,102:1197-1204.
    [25] WU Y,CAO J S,ZHANG T,et al.A novel approach of synchronously recovering phosphorus as vivianite and volatile fatty acids during waste activated sludge and food waste co-fermentation:performance and mechanisms[J].Bioresource Technology,2020,305:123078.
    [26] XU X B,ZHANG W J,GU X,et al.Stabilizing lactate production through repeated batch fermentation of food waste and waste activated sludge[J].Bioresource Technology,2020,300:122709.
    [27] CERDÁN J M A,TEJIDO-NUÑEZ Y,AYMERICH E,et al.A comprehensive comparison of methane and bio-based volatile fatty acids production from urban and agro-industrial sources[J].Waste and Biomass Valorization,2021,12:1357-1369.
    [28] 罗景阳,李依,李涵,等.基于城市固体废弃物的生物炭制备及其在垃圾填埋场和土壤改良中的应用研究进展[J].环境工程,2022,40(3):194-202.
    [29] MARAVEAS C.Production of sustainable and biodegradable polymers from agricultural waste[J].Polymers,2020,12(5):1127.
    [30] XIN X D,HE J G,QIU W.Volatile fatty acid augmentation and microbial community responses in anaerobic co-fermentation process of waste-activated sludge mixed with corn stalk and livestock manure[J].Environmental Science and Pollution Research,2018,25:4846-4857.
    [31] HUANG J G,ZHOU R B,CHEN J J,et al.Volatile fatty acids produced by co-fermentation of waste activated sludge and henna plant biomass[J].Bioresource Technology,2016,211:80-86.
    [32] JIA S T,DAI X H,ZHANG D,et al.Improved bioproduction of short-chain fatty acids from waste activated sludge by perennial ryegrass addition[J].Water Research,2013,47(13):4576-4584.
    [33] YIN Y A,HU Y M,WANG J.Co-fermentation of sewage sludge and lignocellulosic biomass for production of medium-chain fatty acids[J].Bioresource Technology,2022,361:127665.
    [34] DUAN Y Q,ZHOU A J,WEN K L,et al.Upgrading VFAs bioproduction from waste activated sludge via co-fermentation with soy sauce residue[J].Frontiers of Environmental Science & Engineering,2019,13:1-10.
    [35] FANG W,ZHANG P Y,ZHANG T,et al.Upgrading volatile fatty acids production through anaerobic co-fermentation of mushroom residue and sewage sludge:performance evaluation and kinetic analysis[J].Journal of Environmental Management,2019,241:612-618.
    [36] YANG X,DU M A,LEE D J,et al.Improved volatile fatty acids production from proteins of sewage sludge with anthraquinone-2,6-disulfonate (AQDS) under anaerobic condition[J].Bioresource Technology,2012,103(1):494-497.
    [37] ZHANG X Y,YE X F,GUO B,et al.Lignocellulosic hydrolysates and extracellular electron shuttles for H2 production using co-culture fermentation with Clostridium beijerinckii and Geobacter metallireducens[J].Bioresource Technology,2013,147:89-95.
    [38] PANG Z Q,CHEN J,WANG T H,et al.Linking plant secondary metabolites and plant microbiomes:a review[J].Frontiers in Plant Science,2021,12:621276.
    [39] GUO Z C,ZHOU A J,YANG C X,et al.Enhanced short chain fatty acids production from waste activated sludge conditioning with typical agricultural residues:carbon source composition regulates community functions[J].Biotechnology for Biofuels,2015,8:1-14.
    [40] LI Y B,PARK S Y,ZHU J Y.Solid-state anaerobic digestion for methane production from organic waste[J].Renewable and Sustainable Energy Reviews,2011,15(1):821-826.
    [41] RUGHOONUNDUN H,MOHEE R,HOLTZAPPLE M T.Influence of carbon-to-nitrogen ratio on the mixed-acid fermentation of wastewater sludge and pretreated bagasse[J].Bioresource Technology,2012,112:91-97.
    [42] XIA A,JACOB A,TABASSUM M R,et al.Production of hydrogen,ethanol and volatile fatty acids through co-fermentation of macro-and micro-algae[J].Bioresource Technology,2016,205:118-125.
    [43] ZHOU M M,YAN B H,WONG J W,et al.Enhanced volatile fatty acids production from anaerobic fermentation of food waste:a mini-review focusing on acidogenic metabolic pathways[J].Bioresource Technology,2018,248:68-78.
    [44] FENG L Y,CHEN Y G,ZHENG X.Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition:the effect of pH[J].Environmental Science & Technology,2009,43(12):4373-4380.
    [45] MORETTO G,VALENTINO F,PAVAN P,et al.Optimization of urban waste fermentation for volatile fatty acids production[J].Waste Management,2019,92:21-29.
    [46] JIANG C J,PECES M,ANDERSEN M H,et al.Characterizing the growing microorganisms at species level in 46 anaerobic digesters at Danish wastewater treatment plants:a six-year survey on microbial community structure and key drivers[J].Water Research,2021,193:116871.
    [47] ESTEBAN-GUTIÉRREZ M,GARCIA-AGUIRRE J,IRIZAR I,et al.From sewage sludge and agri-food waste to VFA:individual acid production potential and up-scaling[J].Waste Management,2018,77:203-212.
    [48] LI X,CHEN Y G,ZHAO S,et al.Lactic acid accumulation from sludge and food waste to improve the yield of propionic acid-enriched VFA[J].Biochemical Engineering Journal,2014,84:28-35.
    [49] WU Y,CAO J S,ZHANG Q,et al.Continuous waste activated sludge and food waste co-fermentation for synchronously recovering vivianite and volatile fatty acids at different sludge retention times:performance and microbial response[J].Bioresource Technology,2020,313:123610.
    [50] CRUZ H,LAW Y Y,GUEST J S,et al.Mainstream ammonium recovery to advance sustainable urban wastewater management[J].Environmental Science & Technology,2019,53(19):11066-11079.
    [51] PANG H L,ZHANG Y Y,WEI Q,et al.Enhancing volatile fatty acids accumulation through anaerobic co-fermentation of excess sludge and sodium citrate:divalent cation chelation and carbon source supplement[J].Separation and Purification Technology,2023,311:123356.
    [52] ÆSØY A,ØDEGAARD H.Nitrogen removal efficiency and capacity in biofilms with biologically hydrolysed sludge as a carbon source[J].Water Science and Technology,1994,30(6):63.
    [53] FONTAINE P,MOSRATI R,CORROLER D.Medium chain length polyhydroxyalkanoates biosynthesis in Pseudomonas putida mt-2 is enhanced by co-metabolism of glycerol/octanoate or fatty acids mixtures[J].International Journal of Biological Macromolecules,2017,98:430-435.
    [54] RAZA Z A,ABID S,BANAT I M.Polyhydroxyalkanoates:Characteristics,production,recent developments and applications[J].International Biodeterioration & Biodegradation,2018,126:45-56.
    [55] KIM B S.Production of poly (3-hydroxybutyrate) from inexpensive substrates[J].Enzyme and Microbial Technology,2000,27(10):774-777.
    [56] MORETTO G,RUSSO I,BOLZONELLA D,et al.An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas[J].Water Research,2020,170:115371.
    [57] LANFRANCHI A,TASSINATO G,Valentino F,et al.Hydrodynamic cavitation pre-treatment of urban waste:integration with acidogenic fermentation,PHAs synthesis and anaerobic digestion processes[J].Chemosphere,2022,301:134624.
    [58] 李贞,喻早艳,温晴,等.微生物燃料电池在污水处理中的应用[J].江西化工,2022,38(3):10-14.
    [59] LOGAN B E,REGAN J M.Microbial fuel cells—challenges and applications[J].Environmental Science & Technology,2006,40(17):5172-5180.
    [60] DU H X,LI F S.Enhancement of solid potato waste treatment by microbial fuel cell with mixed feeding of waste activated sludge[J].Journal of Cleaner Production,2017,143:336-344.
    [61] TRAPERO J R,HORCAJADA L,LINARES J J,et al.Is microbial fuel cell technology ready?An economic answer towards industrial commercialization[J].Applied Energy,2017,185:698-707.
  • 期刊类型引用(13)

    1. 钟晓梅,宋丹丹,金晶,褚兴飞,王庆,王殿二. 注入式可渗透反应墙治理六价铬污染地下水工程设计实例分析. 广东化工. 2025(04): 100-102+93 . 百度学术
    2. 严芳敏,郭明帅,王菲. 炭铁材料修复三氯乙烯污染地下水的性能. 中国环境科学. 2024(02): 825-831 . 百度学术
    3. 夏文彬,熊思敏,刘广义,陈伟. 可渗透反应墙除砷的研究进展与展望. 环境化学. 2024(03): 895-910 . 百度学术
    4. 江杰,王树飞,苏建,廖长君,罗豪豪,陈俊霖. 固废基PRB复合颗粒填料对Cd~(2+)的吸附特性及净化机制. 中国有色金属学报. 2024(06): 2112-2126 . 百度学术
    5. 江杰,王树飞,罗豪豪,苏建,曹斐姝,廖长君,陈俊霖. PRB颗粒填料对Cd~(2+)的吸附特征及其孔隙结构动态演变规律. 中南大学学报(自然科学版). 2024(07): 2504-2515 . 百度学术
    6. 钟晓梅,褚兴飞,姜翠萍,宋丹丹,顾鑫峰,王殿二. 可渗透反应墙技术系统设计研究. 广东化工. 2024(18): 110-112+126 . 百度学术
    7. 张强,潘超超,孔殿超,董献彬,张勋,张青. 生物可渗透反应墙修复技术研究进展. 绿色科技. 2024(16): 182-187+192 . 百度学术
    8. 彭星,高燕,刘站,孙红卫,张礼知,申文娟. 羧甲基纤维素化零价铁除镍效能. 环境科学学报. 2024(10): 279-287 . 百度学术
    9. 刘恒毅,李蕾,胡雅迪,叶文杰,刘国涛,彭绪亚. 新型生物可渗透反应屏障技术修复简易填埋场壤中流. 环境工程学报. 2024(09): 2500-2511 . 百度学术
    10. 李向东,杜雪虹,董佳甜. PRB处理酸性矿山废水的地球化学反应模拟研究. 煤炭学报. 2023(03): 1345-1352 . 百度学术
    11. 徐慧超,乔华艺,赵勇胜,张慧. 零价铁基可渗透反应墙技术治理Cr(Ⅵ)污染地下水的研究进展. 安全与环境学报. 2023(11): 4143-4151 . 百度学术
    12. 张希,冯悦峰,李正斌,李杰,戴建军,刘福强. 可渗透反应墙技术修复重金属污染地下水的发展与展望. 离子交换与吸附. 2022(03): 269-283 . 百度学术
    13. 董佳甜,杜雪虹,李向东. PRB处理酸性矿山废水及填料堵塞过程. 有色金属(冶炼部分). 2022(11): 126-133 . 百度学术

    其他类型引用(7)

  • 加载中
计量
  • 文章访问数:  242
  • HTML全文浏览量:  28
  • PDF下载量:  7
  • 被引次数: 20
出版历程
  • 收稿日期:  2023-08-31
  • 网络出版日期:  2024-04-29

目录

    /

    返回文章
    返回