GROUNDWATER POLLUTION DYNAMIC RISK ASSESSMENT BASED ON NUMERICAL SIMULATION AND RISK SCREENING
-
摘要: 针对传统污染地块地下水污染风险评价忽略污染扩散风险的问题,以湖南某地下水污染地块及周边为研究区,开展风险评估和动态变化趋势评估。采用定量-定性结合的方式,通过指标筛选和确定,建立了耦合数值模拟预测和风险筛查静态风险评估的污染地块地下水污染动态风险评估方法。模拟预测结果表明,地块土壤和地下水中的污染物随时间逐渐向下游扩散,地下水中Cr(Ⅵ)在38 d时浓度达到最大值1239.5 mg/L,585 d时迁移至河流,917 d时地下水污染羽面积达到最大。基于风险筛查的地下水污染风险评估,和基于数值模拟和风险筛查的地下水污染动态风险2种方法计算得到的地块地下水污染风险总分分别为76.2和72.4,风险分级均为高风险地块,但后者略低于前者,表明针对污染物在包气带和饱水带中的迁移情况,定性分析结果相比定量分析结果可能趋于保守。动态风险评估结果显示,该地块始终为高风险地块,地下水污染风险先上升再下降,在500~700 d时达到最高风险95.2分。建议污染地块应尽快开展地下水风险管控或修复,避免污染扩散导致风险进一步增大。Abstract: Since the traditional groundwater risk assessment of contaminated sites ignored the risk of pollution spreading risk, a groundwater contaminated site and its surroundings in Hunan were selected as the research area for groundwater pollution dynamic risk assessment and trend prediction. A combination of quantitative and qualitative methods was used to establish a dynamic assessment method based on numerical simulation and risk screening through index screening and determination. The simulation prediction shows that the pollutants in the soil and groundwater of the site gradually diffuse downstream over time. The concentration of Cr(Ⅵ) in groundwater reaches a maximum of 1239.5 mg/L on the 38th day. Pollutants migrate to the river on the 585 day, and the groundwater pollution plume reaches its maximum on the 917th day. The total groundwater pollution risk scores of the site calculated by the two methods are 76.2 and 72.4, both belong to high risks, indicating that qualitative analysis of migration in the vadose zone and the water-saturated zone may tend to be conservative compared to quantitative analysis. The dynamic risk assessment results show that the site is always at high-risk throughout its lifetime, and the groundwater pollution risk first rises and then declines, reaching the highest risk of 95.2 points from the 500th day to the 700th day. It is suggested that groundwater risk control or restoration should be carried out to avoid greater risk.
-
[1] 蒲生彦,马晋,杨庆,等.地下水污染预警指标体系构建方法研究进展[J].环境科学与技术,2019,42(3):191-197. [2] SINGH R K,DATTA M,NEMA A K.A new system for groundwater contamination hazard rating of landfills[J].Journal of Environmental Management,2009,91:344-357. [3] 刘姝媛,王红旗.某地下水水源地污染风险评价指标体系研究[J].中国环境科学,2016,36 (10):3166-3174. [4] 环境保护部.关闭搬迁企业地块风险筛查与风险分级技术规定(试行)(环办土壤[2017]67号). [5] HUAN H,LI X,ZHOU J,et al.Groundwater pollution early warning based on QTR model for regional risk management:A case study in Luoyang city,China[J].Environmental Pollution,2020,259:113900. [6] BAGORDO F,MIGONI D,GRASSU T,et al.Using the DPSIR framework to identify factors influencing the quality of groundwater in Grecia Salentina (Puglia,Italy)[J].Rend.Fis.Acc.Lincei,2016,27:113-125. [7] 李月.同江地下水水源地环境污染风险评价指标体系的建立与研究[D].哈尔滨:东北林业大学,2016. [8] 王嘉瑜,蒲生彦,胡玥,等.地下水污染风险预警等级及阈值确定方法研究综述[J].水文地质工程地质,2020,47(2):43-50. [9] 金爱芳,张旭,李广贺.地下水源地污染源危害性评价方法研究[J].中国环境科学,2012,32(6):1075-1079. [10] LI Y,YANG R C,QU X Y,et al.Study on the risk assessment and forewarning model of groundwater pollution[J].Arabian Journal of Geosciences,2020,13:407. [11] 李久辉,卢文喜,常振波,等.基于不确定性分析的地下水污染超标风险预警[J].中国环境科学,2017,37(6):2270-2277. [12] LOCATELLI L,BINNING P J,SANCHEZ-VILA X,et al.A simple contaminant fate and transport modelling tool for management and risk assessment of groundwater pollution from contaminated sites[J].Journal of Contaminant Hydrology,2019,221:35-49. [13] 白利平,王业耀,王金生,等.基于数值模型的地下水污染预警方法研究[J].中国地质,2011,38(6):1652-1659. [14] LI T,LIU Y,BIERG P L.Prioritization of potentially contaminated sites:a comparison between the application of a solute transport model and a risk-screening method in China[J].Journal of Environmental Management,2021,281:111765. [15] 贺国平,邵景力,崔亚莉,等.FEFLOW 在地下水流模拟方面的应用[J].成都理工大学学报:自然科学版,2003,30(4):356-361. [16] 王浩,陆垂裕,秦大庸,等.地下水数值计算与应用研究进展综述[J].地学前缘,2010,17(6):1-12. [17] 刘玲,陈坚,牛浩博,等.基于FEFLOW的三维土壤-地下水耦合铬污染数值模拟研究[J].水文地质工程地质,2022,49(1):164-174. [18] 环境保护部.HJ 338—2018 饮用水水源保护区划分技术规范[S].北京:中国环境科学出版社,2018. [19] KEESSTRA S D,GEISSEN V,MOSSE K,et al.Soil as a filter for groundwater quality[J].Current Opinion in Environmental Sustainability,2012,4(5):507-516. [20] ARIAS-ESTEVEZ M,EUGENIO L P,ELENA M C,et al.The mobility and degradation of pesticides in soils and the pollution of groundwater resources[J].Agriculture,Ecosystems & Environment,2008,123(4):247-260. [21] 尹芝华,杜青青,翟远征,等.利用HYDRUS-2D软件模拟污染事故后三氮污染物的迁移转化规律[J].环境污染与防治,2017,39(10):1071-1076. 期刊类型引用(14)
1. 江雨燕,黄体臣,甘如美江,王付宇. 融合二次分解的深度学习模型在PM_(2.5)浓度预测中的应用. 安全与环境学报. 2025(01): 296-309 . 百度学术
2. 杨帆,毛腾跃,占伟. 基于PCA-Informer~+模型的周期性甲烷菌体浓度预测研究. 中南民族大学学报(自然科学版). 2025(03): 393-399 . 百度学术
3. 赵涛,叶世榕,罗歆琪,夏朋飞. GNSS-IR潮位反演中高仰角数据质量控制方法. 武汉大学学报(信息科学版). 2024(01): 68-76 . 百度学术
4. 张雅波,陈春晖. 融合情绪分析和Informer-ARIMA模型的比特币价格预测方法. 现代信息科技. 2024(09): 131-135 . 百度学术
5. 陆钊,龙法宁,陈国年. 基于时间序列的发电机设备异常分析. 现代信息科技. 2024(12): 121-124 . 百度学术
6. 王鲁君,孙永华,刘洪涛,于秋红,郝浚杰. 基于多尺度特征Informer模型的受热面积灰预测研究. 山东电力高等专科学校学报. 2024(03): 35-40 . 百度学术
7. 马愈昭,张宇航,王凌飞. TimeGAN-Informer长时机场能见度预测. 安全与环境学报. 2024(07): 2517-2527 . 百度学术
8. 何志铧,熊祖强. 基于Informer神经网络的工作面矿压预测研究. 矿业研究与开发. 2024(07): 142-148 . 百度学术
9. 刘妙男,王魏,胡显辉,许德昊. 基于因果卷积和Informer模型的城市公交客流预测. 控制工程. 2024(08): 1445-1454 . 百度学术
10. 安昱宁,朱四富,刘静,杜立伟,刘长青. 基于深度学习的污水处理厂出水总磷预测方法. 工业水处理. 2024(10): 143-150 . 百度学术
11. 何宇涵. 基于自注意力机制的PM_(2.5)长时间尺度预测. 长江信息通信. 2024(10): 72-75 . 百度学术
12. 王伟,王海云,黄晓芳. 基于Informer的风电机组叶根载荷预测. 水力发电. 2023(09): 85-89 . 百度学术
13. 董子敬,李凡,孙宏,朱梦媛,范博艺. 基于Informer模型的进近阶段工作负荷管理胜任力评估. 飞行力学. 2023(05): 81-87 . 百度学术
14. 蒲维,杨毅强,张渊博,付江涛,宋弘. 基于NGO-VMD-FCBF-Informer的电力负荷组合预测模型. 智能计算机与应用. 2023(11): 135-141 . 百度学术
其他类型引用(17)
-

计量
- 文章访问数: 189
- HTML全文浏览量: 26
- PDF下载量: 8
- 被引次数: 31