GROUNDWATER POLLUTION DYNAMIC RISK ASSESSMENT BASED ON NUMERICAL SIMULATION AND RISK SCREENING
-
摘要: 针对传统污染地块地下水污染风险评价忽略污染扩散风险的问题,以湖南某地下水污染地块及周边为研究区,开展风险评估和动态变化趋势评估。采用定量-定性结合的方式,通过指标筛选和确定,建立了耦合数值模拟预测和风险筛查静态风险评估的污染地块地下水污染动态风险评估方法。模拟预测结果表明,地块土壤和地下水中的污染物随时间逐渐向下游扩散,地下水中Cr(Ⅵ)在38 d时浓度达到最大值1239.5 mg/L,585 d时迁移至河流,917 d时地下水污染羽面积达到最大。基于风险筛查的地下水污染风险评估,和基于数值模拟和风险筛查的地下水污染动态风险2种方法计算得到的地块地下水污染风险总分分别为76.2和72.4,风险分级均为高风险地块,但后者略低于前者,表明针对污染物在包气带和饱水带中的迁移情况,定性分析结果相比定量分析结果可能趋于保守。动态风险评估结果显示,该地块始终为高风险地块,地下水污染风险先上升再下降,在500~700 d时达到最高风险95.2分。建议污染地块应尽快开展地下水风险管控或修复,避免污染扩散导致风险进一步增大。Abstract: Since the traditional groundwater risk assessment of contaminated sites ignored the risk of pollution spreading risk, a groundwater contaminated site and its surroundings in Hunan were selected as the research area for groundwater pollution dynamic risk assessment and trend prediction. A combination of quantitative and qualitative methods was used to establish a dynamic assessment method based on numerical simulation and risk screening through index screening and determination. The simulation prediction shows that the pollutants in the soil and groundwater of the site gradually diffuse downstream over time. The concentration of Cr(Ⅵ) in groundwater reaches a maximum of 1239.5 mg/L on the 38th day. Pollutants migrate to the river on the 585 day, and the groundwater pollution plume reaches its maximum on the 917th day. The total groundwater pollution risk scores of the site calculated by the two methods are 76.2 and 72.4, both belong to high risks, indicating that qualitative analysis of migration in the vadose zone and the water-saturated zone may tend to be conservative compared to quantitative analysis. The dynamic risk assessment results show that the site is always at high-risk throughout its lifetime, and the groundwater pollution risk first rises and then declines, reaching the highest risk of 95.2 points from the 500th day to the 700th day. It is suggested that groundwater risk control or restoration should be carried out to avoid greater risk.
-
[1] 蒲生彦,马晋,杨庆,等.地下水污染预警指标体系构建方法研究进展[J].环境科学与技术,2019,42(3):191-197. [2] SINGH R K,DATTA M,NEMA A K.A new system for groundwater contamination hazard rating of landfills[J].Journal of Environmental Management,2009,91:344-357. [3] 刘姝媛,王红旗.某地下水水源地污染风险评价指标体系研究[J].中国环境科学,2016,36 (10):3166-3174. [4] 环境保护部.关闭搬迁企业地块风险筛查与风险分级技术规定(试行)(环办土壤[2017]67号). [5] HUAN H,LI X,ZHOU J,et al.Groundwater pollution early warning based on QTR model for regional risk management:A case study in Luoyang city,China[J].Environmental Pollution,2020,259:113900. [6] BAGORDO F,MIGONI D,GRASSU T,et al.Using the DPSIR framework to identify factors influencing the quality of groundwater in Grecia Salentina (Puglia,Italy)[J].Rend.Fis.Acc.Lincei,2016,27:113-125. [7] 李月.同江地下水水源地环境污染风险评价指标体系的建立与研究[D].哈尔滨:东北林业大学,2016. [8] 王嘉瑜,蒲生彦,胡玥,等.地下水污染风险预警等级及阈值确定方法研究综述[J].水文地质工程地质,2020,47(2):43-50. [9] 金爱芳,张旭,李广贺.地下水源地污染源危害性评价方法研究[J].中国环境科学,2012,32(6):1075-1079. [10] LI Y,YANG R C,QU X Y,et al.Study on the risk assessment and forewarning model of groundwater pollution[J].Arabian Journal of Geosciences,2020,13:407. [11] 李久辉,卢文喜,常振波,等.基于不确定性分析的地下水污染超标风险预警[J].中国环境科学,2017,37(6):2270-2277. [12] LOCATELLI L,BINNING P J,SANCHEZ-VILA X,et al.A simple contaminant fate and transport modelling tool for management and risk assessment of groundwater pollution from contaminated sites[J].Journal of Contaminant Hydrology,2019,221:35-49. [13] 白利平,王业耀,王金生,等.基于数值模型的地下水污染预警方法研究[J].中国地质,2011,38(6):1652-1659. [14] LI T,LIU Y,BIERG P L.Prioritization of potentially contaminated sites:a comparison between the application of a solute transport model and a risk-screening method in China[J].Journal of Environmental Management,2021,281:111765. [15] 贺国平,邵景力,崔亚莉,等.FEFLOW 在地下水流模拟方面的应用[J].成都理工大学学报:自然科学版,2003,30(4):356-361. [16] 王浩,陆垂裕,秦大庸,等.地下水数值计算与应用研究进展综述[J].地学前缘,2010,17(6):1-12. [17] 刘玲,陈坚,牛浩博,等.基于FEFLOW的三维土壤-地下水耦合铬污染数值模拟研究[J].水文地质工程地质,2022,49(1):164-174. [18] 环境保护部.HJ 338—2018 饮用水水源保护区划分技术规范[S].北京:中国环境科学出版社,2018. [19] KEESSTRA S D,GEISSEN V,MOSSE K,et al.Soil as a filter for groundwater quality[J].Current Opinion in Environmental Sustainability,2012,4(5):507-516. [20] ARIAS-ESTEVEZ M,EUGENIO L P,ELENA M C,et al.The mobility and degradation of pesticides in soils and the pollution of groundwater resources[J].Agriculture,Ecosystems & Environment,2008,123(4):247-260. [21] 尹芝华,杜青青,翟远征,等.利用HYDRUS-2D软件模拟污染事故后三氮污染物的迁移转化规律[J].环境污染与防治,2017,39(10):1071-1076. 期刊类型引用(14)
1. 雒月云,毛怡心,庄思琪,邓富昌,侯敏,唐宋,姚孝元. 北京市不同季节室外细菌气溶胶分布特征及其环境影响因素分析. 环境科学研究. 2022(02): 556-565 . 百度学术
2. 王刘铭,邓超,钟兰頔. 2020年南昌市大气污染特征与潜在源区. 气象与减灾研究. 2021(04): 290-298 . 百度学术
3. 何仁江,韩知峡,柏珺,薛京舟,肖开煌,张青碧. 泸州城区大气细颗粒物时空分布特征及变化规律. 西南大学学报(自然科学版). 2020(01): 88-94 . 百度学术
4. 白莉,温轩,徐昭炜. 北京市大气环境评价及污染物时空分布. 绿色环保建材. 2020(03): 47-49 . 百度学术
5. 高硕晗,陶双成,熊新竹,黄山倩,李娜. 北方地区典型高速公路近路区域大气污染特征研究. 生态环境学报. 2019(06): 1168-1174 . 百度学术
6. 尚媛媛,郑小波,夏晓玲,宋丹. 贵阳市PM_(2.5)分布特征及气象条件的影响. 高原山地气象研究. 2018(03): 45-50 . 百度学术
7. 卢月明,王亮,仇阿根,张用川,赵阳阳. 一种基于主成分分析的协同克里金插值方法. 测绘通报. 2017(11): 51-57+63 . 百度学术
8. 周俊佳,梁娟珠. 福州市区大气污染物质量浓度时空分布特征分析. 环境工程. 2017(02): 89-93+173 . 本站查看
9. 赵阳,胡恭任,于瑞莲,陆成伟,樊孝俊,黄灵光,刘海婷. 2013年南昌市区PM_(2.5)的浓度水平及时空分布特征与来源. 环境科学研究. 2017(06): 854-863 . 百度学术
10. 熊新竹,陶双成,高硕晗,姚嘉林,孔亚平. 北京典型主城区冬季大气污染特征分析. 生态环境学报. 2017(07): 1167-1173 . 百度学术
11. 宋杰,关茗洋,陈浪,陈凤格. 2013-2015年石家庄市臭氧时空分布特征及与居民每日呼吸系统疾病急救的关系. 医学动物防制. 2017(08): 859-862 . 百度学术
12. 史云洁,王沛,马姗婕,王鑫,何梅. 大气细颗粒物对实验动物氧化应激及炎症反应研究进展. 中国公共卫生. 2017(01): 35-38 . 百度学术
13. 程念亮,李云婷,孙峰,李金香,程兵芬,李红霞,邱启鸿. 北京市重大活动空气质量评估技术体系. 安徽农业科学. 2016(29): 44-46+50 . 百度学术
14. 程念亮,李云婷,孙峰,张大伟,徐文帅,王欣,邱启鸿,董欣,孟凡,李红霞. 北京市大气PM_(2.5)监测·模拟和评估技术. 安徽农业科学. 2016(34): 85-89 . 百度学术
其他类型引用(10)
-

计量
- 文章访问数: 186
- HTML全文浏览量: 25
- PDF下载量: 8
- 被引次数: 24