中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于XGBoost选择迁移条件提升LSTM模型河流水质预测能力

余镒琦 陈能汪 余其彪 李少斌 张东站 瞿帆

余镒琦, 陈能汪, 余其彪, 李少斌, 张东站, 瞿帆. 基于XGBoost选择迁移条件提升LSTM模型河流水质预测能力[J]. 环境工程, 2024, 42(1): 223-234. doi: 10.13205/j.hjgc.202401029
引用本文: 余镒琦, 陈能汪, 余其彪, 李少斌, 张东站, 瞿帆. 基于XGBoost选择迁移条件提升LSTM模型河流水质预测能力[J]. 环境工程, 2024, 42(1): 223-234. doi: 10.13205/j.hjgc.202401029
YU Yiqi, CHEN Nengwang, YU Qibiao, LI Shaobin, ZHANG Dongzhan, QU Fan. SELECTING TRANSFER CONDITIONS BASED ON XGBOOST TO IMPROVE WATER QUALITY PREDICTION CAPACITY OF THE LSTM MODEL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 223-234. doi: 10.13205/j.hjgc.202401029
Citation: YU Yiqi, CHEN Nengwang, YU Qibiao, LI Shaobin, ZHANG Dongzhan, QU Fan. SELECTING TRANSFER CONDITIONS BASED ON XGBOOST TO IMPROVE WATER QUALITY PREDICTION CAPACITY OF THE LSTM MODEL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 223-234. doi: 10.13205/j.hjgc.202401029

基于XGBoost选择迁移条件提升LSTM模型河流水质预测能力

doi: 10.13205/j.hjgc.202401029
基金项目: 

国家自然科学基金“中国-智利水环境管理比较研究:聚焦气候变化下流域生态与社会经济的可持续性”(51961125203)

详细信息
    作者简介:

    余镒琦(1996-),男,硕士研究生,主要研究方向为水质预测模型构建。yuyiqi@stu.xmu.edu.cn

    通讯作者:

    陈能汪(1976-),男,教授,主要研究方向为海陆界面环境过程。nwchen@xmu.edu.cn

SELECTING TRANSFER CONDITIONS BASED ON XGBOOST TO IMPROVE WATER QUALITY PREDICTION CAPACITY OF THE LSTM MODEL

  • 摘要: 准确预测河流水质变化是流域水环境管理的重要基础。目前常用的基于数据驱动的深度学习模型依赖大量的监测数据训练,然而很多河流数据缺乏,无法满足水质预测精度要求。提出了一种基于极端梯度提升模型(XGBoost)的迁移条件选择方法,利用全国河流自动监测站点的水质参数(水温、pH、溶解氧、总氮)数据集,研究建立长短期记忆神经网络(LSTM)模型库,通过迁移学习条件的优化,提升LSTM模型的预测能力。结果表明:1)采用不同源域和迁移方式训练出的模型,其预测精度有很大差异;2)基于XGBoost模型选择最佳迁移条件,迁移模型的预测误差(RMSE)降低了9.6%~28.9%,LSTM模型预测精度明显提升;3)选取合适的迁移方式、选用性质接近的源域数据、增加训练数据量均可以提升迁移模型的预测精度。该建模方法可应用于实测数据少的河流水质预测,为流域水环境精细化管理提供技术支持。
  • [1] FALCONI T M A,KULINKINA A V,MOHAN V R,et al.Quantifying tap-to-household water quality deterioration in urban communities in Vellore,India:the impact of spatial assumptions[J].International Journal of Hygiene and Environmental Health,2017,220(1):29-36.
    [2] PETER L B,NELSON T A,VAN A K L,et al.Comparison of green algal bloom intensity and related water quality parameters at paired "bloom" and "non-bloom" sites[J].Journal of Phycology,2007,43:33-34.
    [3] VOEROESMARTY C J,MCINTYRE P B,GESSNER M O,et al.Global threats to human water security and river biodiversity[J].Nature,2010,467(7315):555-561.
    [4] TANER M U,CARLETON J N,WELLMAN M.Integrated model projections of climate change impacts on a North American lake[J].Ecological Modelling,2011,222(18):3380-3393.
    [5] COSTA C,MARQUES L D,ALMEIDA A K,et al.Applicability of water quality models around the world-a review[J].Environmental Science and Pollution Research,2019,26(36):36141-36162.
    [6] 陈能汪,余镒琦,陈纪新,等.人工神经网络模型在水质预警中的应用研究进展[J].环境科学学报,2021,41(12):4771-4782.
    [7] ZHI W,FENG D P,TSAI W P,et al.From hydrometeorology to river water quality:can a deep learning model predict dissolved oxygen at the continental scale?[J].Environmental Science & Technology,2021,55(4):2357-2368.
    [8] LU J,BEHBOOD V,HAO P,et al.Transfer learning using computational intelligence:a survey[J].Knowledge-Based Systems,2015,80:14-23.
    [9] LI X C,ZHAN D C,YANG J Q,et al.Towards understanding transfer learning algorithms using meta transfer features[C]//24th Pacific-Asia Conference on Knowledge Discovery and Data Mining,Singapore,2020.
    [10] RAFFEL C,SHAZEER N,ROBERTS A,et al.Exploring the limits of transfer learning with a unified text-to-text transformer[J].Journal of Machine Learning Research,2020,21:5485-5551.
    [11] ALAWAD M,YOON H J,GAO S,et al.Privacy-preserving deep learning nlp models for cancer registries[J].IEEE Transactions on Emerging Topics in Computing,2021,9(3):1219-1230.
    [12] AYANA G,DESE K,CHOE S W.Transfer learning in breast cancer diagnoses via ultrasound imaging[J].Cancers,2021,13(4):1-15.
    [13] HERATH S,FERNANDO B,HARANDI M.Using temporal information for recognizing actions from still images[J].Pattern Recognition,2019,96:1-11.
    [14] ZHOU J,CHEN Y,XIAO F,et al.Water quality prediction method based on transfer learning and echo state network[J].Journal of Circuits Systems and Computers,2021,30(14):1-12.
    [15] CHEN Z,XU H,JIANG P,et al.A transfer learning-based LSTM strategy for imputing large-scale consecutive missing data and its application in a water quality prediction system[J].Journal of Hydrology,2021,602:1-16.
    [16] PENG L,WU H,GAO M,et al.TLT:recurrent fine-tuning transfer learning for water quality long-term prediction[J].Water Research,2022,225:1-12.
    [17] MICHIELETTO L,OUYANG B,WILLS P.Investigation of water quality using transfer learning,phased LSTM and correntropy loss[C]//Conference on Big Data Ⅱ-Learning,Analytics,and Applications,SPIE,2020.
    [18] MA J,CHENG J C P,LIN C,et al.Improving air quality prediction accuracy at larger temporal resolutions using deep learning and transfer learning techniques[J].Atmospheric Environment,2019,214:1-9.
    [19] WILLARD J D,READ J S,APPLING A P,et al.Predicting water temperature dynamics of unmonitored lakes with meta-transfer learning[J].Water Resources Research,2021,57(7):1-11.
    [20] MA J,LI Z,CHENG J C P,et al.Air quality prediction at new stations using spatially transferred bidirectional long short-term memory network[J].Science of the Total Environment,2020,705:1-12.
    [21] GUI L,XU R,LU Q,et al.Negative transfer detection in transductive transfer learning[J].International Journal of Machine Learning and Cybernetics,2018,9(2):185-197.
    [22] WANG S,ZHOU Y,YOU X,et al.Quantification of the antagonistic and synergistic effects of Pb2+,Cu2+,and Zn2+bioaccumulation by living Bacillus subtilis biomass using XGBoost and SHAP[J].Journal of Hazardous Materials,2023,446:1-9.
    [23] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural computation,1997,9(8):1735-1780.
    [24] ZHOU Y L.Real-time probabilistic forecasting of river water quality under data missing situation:deep learning plus post-processing techniques[J].Journal of Hydrology,2020,589:1-10.
    [25] YANG Y,XIONG Q,WU C,et al.A study on water quality prediction by a hybrid CNN-LSTM model with attention mechanism[J].Environmental Science and Pollution Research,2021,28(39):55129-55139.
    [26] FANG X,LI X Y,ZHANG Y F,et al.Random forest-based understanding and predicting of the impacts of anthropogenic nutrient inputs on the water quality of a tropical lagoon[J].Environmental Research Letters,2021,16(5):1-12.
    [27] PAN S J,YANG Q A.A survey on transfer learning[J].Ieee Transactions on Knowledge and Data Engineering,2010,22(10):1345-1359.
    [28] WEI Y,ZHANG Y,HUANG J Z,et al.Transfer learning via learning to transfer[C]//35th International Conference on Machine Learning,Sweden,2018.
    [29] BHAGAT S K,TUNG T M,YASEEN Z M.Heavy metal contamination prediction using ensemble model:case study of Bay sedimentation,Australia[J].Journal of Hazardous Materials,2021,403:1-13.
    [30] BENTEJAC C,CSORGO A,MARTINEZ-Munoz G.A comparative analysis of gradient boosting algorithms[J].Artificial Intelligence Review,2021,54(3):1937-1967.
    [31] DUPAS R,TAVENARD R,FOVET O,et al.Identifying seasonal patterns of phosphorus storm dynamics with dynamic time warping[J].Water Resources Research,2015,51(11):8868-8882.
    [32] LI L,QIAO J,YU G,et al.Interpretable tree-based ensemble model for predicting beach water quality[J].Water Research,2022,211:1-12.
    [33] IOVANAC N C,SAVOIE B M.Simpler is better:how linear prediction tasks improve transfer learning in chemical autoencoders[J].Journal of Physical Chemistry A,2020,124(18):3679-3685.
    [34] WU X T,MANTON J H,AICKELIN U,et al.Online transfer learning:negative transfer and effect of prior knowledge[C]//IEEE International Symposium on Information Theory,Australia,2021.
    [35] 邓建军.基于Attention-LSTM与XGBoost集成机制的中国商品期货投资策略研究[D].成都:四川大学,2022.
    [36] 黄心裕.基于数值模拟和XGBoost算法的海南清澜红树林消浪分析[D].大连:大连理工大学,2022.
  • 加载中
计量
  • 文章访问数:  90
  • HTML全文浏览量:  9
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-26
  • 网络出版日期:  2024-04-29

目录

    /

    返回文章
    返回