CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于XGBoost选择迁移条件提升LSTM模型河流水质预测能力

余镒琦 陈能汪 余其彪 李少斌 张东站 瞿帆

余镒琦, 陈能汪, 余其彪, 李少斌, 张东站, 瞿帆. 基于XGBoost选择迁移条件提升LSTM模型河流水质预测能力[J]. 环境工程, 2024, 42(1): 223-234. doi: 10.13205/j.hjgc.202401029
引用本文: 余镒琦, 陈能汪, 余其彪, 李少斌, 张东站, 瞿帆. 基于XGBoost选择迁移条件提升LSTM模型河流水质预测能力[J]. 环境工程, 2024, 42(1): 223-234. doi: 10.13205/j.hjgc.202401029
YU Yiqi, CHEN Nengwang, YU Qibiao, LI Shaobin, ZHANG Dongzhan, QU Fan. SELECTING TRANSFER CONDITIONS BASED ON XGBOOST TO IMPROVE WATER QUALITY PREDICTION CAPACITY OF THE LSTM MODEL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 223-234. doi: 10.13205/j.hjgc.202401029
Citation: YU Yiqi, CHEN Nengwang, YU Qibiao, LI Shaobin, ZHANG Dongzhan, QU Fan. SELECTING TRANSFER CONDITIONS BASED ON XGBOOST TO IMPROVE WATER QUALITY PREDICTION CAPACITY OF THE LSTM MODEL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 223-234. doi: 10.13205/j.hjgc.202401029

基于XGBoost选择迁移条件提升LSTM模型河流水质预测能力

doi: 10.13205/j.hjgc.202401029
基金项目: 

国家自然科学基金“中国-智利水环境管理比较研究:聚焦气候变化下流域生态与社会经济的可持续性”(51961125203)

详细信息
    作者简介:

    余镒琦(1996-),男,硕士研究生,主要研究方向为水质预测模型构建。yuyiqi@stu.xmu.edu.cn

    通讯作者:

    陈能汪(1976-),男,教授,主要研究方向为海陆界面环境过程。nwchen@xmu.edu.cn

SELECTING TRANSFER CONDITIONS BASED ON XGBOOST TO IMPROVE WATER QUALITY PREDICTION CAPACITY OF THE LSTM MODEL

  • 摘要: 准确预测河流水质变化是流域水环境管理的重要基础。目前常用的基于数据驱动的深度学习模型依赖大量的监测数据训练,然而很多河流数据缺乏,无法满足水质预测精度要求。提出了一种基于极端梯度提升模型(XGBoost)的迁移条件选择方法,利用全国河流自动监测站点的水质参数(水温、pH、溶解氧、总氮)数据集,研究建立长短期记忆神经网络(LSTM)模型库,通过迁移学习条件的优化,提升LSTM模型的预测能力。结果表明:1)采用不同源域和迁移方式训练出的模型,其预测精度有很大差异;2)基于XGBoost模型选择最佳迁移条件,迁移模型的预测误差(RMSE)降低了9.6%~28.9%,LSTM模型预测精度明显提升;3)选取合适的迁移方式、选用性质接近的源域数据、增加训练数据量均可以提升迁移模型的预测精度。该建模方法可应用于实测数据少的河流水质预测,为流域水环境精细化管理提供技术支持。
  • [1] FALCONI T M A,KULINKINA A V,MOHAN V R,et al.Quantifying tap-to-household water quality deterioration in urban communities in Vellore,India:the impact of spatial assumptions[J].International Journal of Hygiene and Environmental Health,2017,220(1):29-36.
    [2] PETER L B,NELSON T A,VAN A K L,et al.Comparison of green algal bloom intensity and related water quality parameters at paired "bloom" and "non-bloom" sites[J].Journal of Phycology,2007,43:33-34.
    [3] VOEROESMARTY C J,MCINTYRE P B,GESSNER M O,et al.Global threats to human water security and river biodiversity[J].Nature,2010,467(7315):555-561.
    [4] TANER M U,CARLETON J N,WELLMAN M.Integrated model projections of climate change impacts on a North American lake[J].Ecological Modelling,2011,222(18):3380-3393.
    [5] COSTA C,MARQUES L D,ALMEIDA A K,et al.Applicability of water quality models around the world-a review[J].Environmental Science and Pollution Research,2019,26(36):36141-36162.
    [6] 陈能汪,余镒琦,陈纪新,等.人工神经网络模型在水质预警中的应用研究进展[J].环境科学学报,2021,41(12):4771-4782.
    [7] ZHI W,FENG D P,TSAI W P,et al.From hydrometeorology to river water quality:can a deep learning model predict dissolved oxygen at the continental scale?[J].Environmental Science & Technology,2021,55(4):2357-2368.
    [8] LU J,BEHBOOD V,HAO P,et al.Transfer learning using computational intelligence:a survey[J].Knowledge-Based Systems,2015,80:14-23.
    [9] LI X C,ZHAN D C,YANG J Q,et al.Towards understanding transfer learning algorithms using meta transfer features[C]//24th Pacific-Asia Conference on Knowledge Discovery and Data Mining,Singapore,2020.
    [10] RAFFEL C,SHAZEER N,ROBERTS A,et al.Exploring the limits of transfer learning with a unified text-to-text transformer[J].Journal of Machine Learning Research,2020,21:5485-5551.
    [11] ALAWAD M,YOON H J,GAO S,et al.Privacy-preserving deep learning nlp models for cancer registries[J].IEEE Transactions on Emerging Topics in Computing,2021,9(3):1219-1230.
    [12] AYANA G,DESE K,CHOE S W.Transfer learning in breast cancer diagnoses via ultrasound imaging[J].Cancers,2021,13(4):1-15.
    [13] HERATH S,FERNANDO B,HARANDI M.Using temporal information for recognizing actions from still images[J].Pattern Recognition,2019,96:1-11.
    [14] ZHOU J,CHEN Y,XIAO F,et al.Water quality prediction method based on transfer learning and echo state network[J].Journal of Circuits Systems and Computers,2021,30(14):1-12.
    [15] CHEN Z,XU H,JIANG P,et al.A transfer learning-based LSTM strategy for imputing large-scale consecutive missing data and its application in a water quality prediction system[J].Journal of Hydrology,2021,602:1-16.
    [16] PENG L,WU H,GAO M,et al.TLT:recurrent fine-tuning transfer learning for water quality long-term prediction[J].Water Research,2022,225:1-12.
    [17] MICHIELETTO L,OUYANG B,WILLS P.Investigation of water quality using transfer learning,phased LSTM and correntropy loss[C]//Conference on Big Data Ⅱ-Learning,Analytics,and Applications,SPIE,2020.
    [18] MA J,CHENG J C P,LIN C,et al.Improving air quality prediction accuracy at larger temporal resolutions using deep learning and transfer learning techniques[J].Atmospheric Environment,2019,214:1-9.
    [19] WILLARD J D,READ J S,APPLING A P,et al.Predicting water temperature dynamics of unmonitored lakes with meta-transfer learning[J].Water Resources Research,2021,57(7):1-11.
    [20] MA J,LI Z,CHENG J C P,et al.Air quality prediction at new stations using spatially transferred bidirectional long short-term memory network[J].Science of the Total Environment,2020,705:1-12.
    [21] GUI L,XU R,LU Q,et al.Negative transfer detection in transductive transfer learning[J].International Journal of Machine Learning and Cybernetics,2018,9(2):185-197.
    [22] WANG S,ZHOU Y,YOU X,et al.Quantification of the antagonistic and synergistic effects of Pb2+,Cu2+,and Zn2+bioaccumulation by living Bacillus subtilis biomass using XGBoost and SHAP[J].Journal of Hazardous Materials,2023,446:1-9.
    [23] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural computation,1997,9(8):1735-1780.
    [24] ZHOU Y L.Real-time probabilistic forecasting of river water quality under data missing situation:deep learning plus post-processing techniques[J].Journal of Hydrology,2020,589:1-10.
    [25] YANG Y,XIONG Q,WU C,et al.A study on water quality prediction by a hybrid CNN-LSTM model with attention mechanism[J].Environmental Science and Pollution Research,2021,28(39):55129-55139.
    [26] FANG X,LI X Y,ZHANG Y F,et al.Random forest-based understanding and predicting of the impacts of anthropogenic nutrient inputs on the water quality of a tropical lagoon[J].Environmental Research Letters,2021,16(5):1-12.
    [27] PAN S J,YANG Q A.A survey on transfer learning[J].Ieee Transactions on Knowledge and Data Engineering,2010,22(10):1345-1359.
    [28] WEI Y,ZHANG Y,HUANG J Z,et al.Transfer learning via learning to transfer[C]//35th International Conference on Machine Learning,Sweden,2018.
    [29] BHAGAT S K,TUNG T M,YASEEN Z M.Heavy metal contamination prediction using ensemble model:case study of Bay sedimentation,Australia[J].Journal of Hazardous Materials,2021,403:1-13.
    [30] BENTEJAC C,CSORGO A,MARTINEZ-Munoz G.A comparative analysis of gradient boosting algorithms[J].Artificial Intelligence Review,2021,54(3):1937-1967.
    [31] DUPAS R,TAVENARD R,FOVET O,et al.Identifying seasonal patterns of phosphorus storm dynamics with dynamic time warping[J].Water Resources Research,2015,51(11):8868-8882.
    [32] LI L,QIAO J,YU G,et al.Interpretable tree-based ensemble model for predicting beach water quality[J].Water Research,2022,211:1-12.
    [33] IOVANAC N C,SAVOIE B M.Simpler is better:how linear prediction tasks improve transfer learning in chemical autoencoders[J].Journal of Physical Chemistry A,2020,124(18):3679-3685.
    [34] WU X T,MANTON J H,AICKELIN U,et al.Online transfer learning:negative transfer and effect of prior knowledge[C]//IEEE International Symposium on Information Theory,Australia,2021.
    [35] 邓建军.基于Attention-LSTM与XGBoost集成机制的中国商品期货投资策略研究[D].成都:四川大学,2022.
    [36] 黄心裕.基于数值模拟和XGBoost算法的海南清澜红树林消浪分析[D].大连:大连理工大学,2022.
  • 加载中
计量
  • 文章访问数:  86
  • HTML全文浏览量:  9
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-26
  • 网络出版日期:  2024-04-29

目录

    /

    返回文章
    返回